mirror of
https://github.com/gchq/CyberChef.git
synced 2024-11-17 01:18:31 +01:00
473 lines
17 KiB
JavaScript
473 lines
17 KiB
JavaScript
|
/**
|
||
|
* Emulation of the Bombe machine.
|
||
|
*
|
||
|
* @author s2224834
|
||
|
* @copyright Crown Copyright 2019
|
||
|
* @license Apache-2.0
|
||
|
*/
|
||
|
|
||
|
import OperationError from "../errors/OperationError";
|
||
|
import Utils from "../Utils";
|
||
|
import {Rotor, a2i, i2a} from "./Enigma";
|
||
|
|
||
|
/**
|
||
|
* Convenience/optimisation subclass of Rotor
|
||
|
*
|
||
|
* This allows creating multiple Rotors which share backing maps, to avoid repeatedly parsing the
|
||
|
* rotor spec strings and duplicating the maps in memory.
|
||
|
*/
|
||
|
class CopyRotor extends Rotor {
|
||
|
/**
|
||
|
* Return a copy of this Rotor.
|
||
|
*/
|
||
|
copy() {
|
||
|
const clone = {
|
||
|
map: this.map,
|
||
|
revMap: this.revMap,
|
||
|
pos: this.pos,
|
||
|
step: this.step,
|
||
|
transform: this.transform,
|
||
|
revTransform: this.revTransform,
|
||
|
};
|
||
|
return clone;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Node in the menu graph
|
||
|
*
|
||
|
* A node represents a cipher/plaintext letter.
|
||
|
*/
|
||
|
class Node {
|
||
|
/**
|
||
|
* Node constructor.
|
||
|
* @param {number} letter - The plain/ciphertext letter this node represents (as a number).
|
||
|
*/
|
||
|
constructor(letter) {
|
||
|
this.letter = letter;
|
||
|
this.edges = new Set();
|
||
|
this.visited = false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Edge in the menu graph
|
||
|
*
|
||
|
* An edge represents an Enigma machine transformation between two letters.
|
||
|
*/
|
||
|
class Edge {
|
||
|
/**
|
||
|
* Edge constructor - an Enigma machine mapping between letters
|
||
|
* @param {number} pos - The rotor position, relative to the beginning of the crib, at this edge
|
||
|
* @param {number} node1 - Letter at one end (as a number)
|
||
|
* @param {number} node2 - Letter at the other end
|
||
|
*/
|
||
|
constructor(pos, node1, node2) {
|
||
|
this.pos = pos;
|
||
|
this.node1 = node1;
|
||
|
this.node2 = node2;
|
||
|
node1.edges.add(this);
|
||
|
node2.edges.add(this);
|
||
|
this.visited = false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Given the node at one end of this edge, return the other end.
|
||
|
* @param node {number} - The node we have
|
||
|
* @returns {number}
|
||
|
*/
|
||
|
getOther(node) {
|
||
|
if (this.node1 === node) {
|
||
|
return this.node2;
|
||
|
}
|
||
|
return this.node1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Scrambler.
|
||
|
*
|
||
|
* This is effectively just an Enigma machine, but it only operates on one character at a time and
|
||
|
* the stepping mechanism is different.
|
||
|
*/
|
||
|
class Scrambler {
|
||
|
/** Scrambler constructor.
|
||
|
* @param {Object[]} rotors - List of rotors in this scrambler
|
||
|
* @param {Object} reflector - This scrambler's reflector
|
||
|
* @param {number} pos - Position offset from start of crib
|
||
|
* @param {number} end1 - Letter in menu this scrambler is attached to
|
||
|
* @param {number} end2 - Other letter in menu this scrambler is attached to
|
||
|
*/
|
||
|
constructor(rotors, reflector, pos, end1, end2) {
|
||
|
this.reflector = reflector;
|
||
|
this.rotors = rotors;
|
||
|
this.rotorsRev = [].concat(rotors).reverse();
|
||
|
this.initialPos = pos;
|
||
|
this.rotors[0].pos += pos;
|
||
|
this.end1 = end1;
|
||
|
this.end2 = end2;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Step the rotors forward.
|
||
|
*
|
||
|
* All nodes in the Bombe step in sync.
|
||
|
* @param {number} n - How many rotors to step
|
||
|
*/
|
||
|
step(n) {
|
||
|
// The Bombe steps the slowest rotor on an actual Enigma first.
|
||
|
for (let i=this.rotors.length - 1; i>=this.rotors.length-n; i--) {
|
||
|
this.rotors[i].step();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Run a letter through the scrambler.
|
||
|
* @param {number} i - The letter to transform (as a number)
|
||
|
* @returns {number}
|
||
|
*/
|
||
|
transform(i) {
|
||
|
let letter = i;
|
||
|
for (const rotor of this.rotors) {
|
||
|
letter = rotor.transform(letter);
|
||
|
}
|
||
|
letter = this.reflector.transform(letter);
|
||
|
for (const rotor of this.rotorsRev) {
|
||
|
letter = rotor.revTransform(letter);
|
||
|
}
|
||
|
return letter;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Given one letter in the menu this scrambler maps to, return the other.
|
||
|
* @param end {number} - The node we have
|
||
|
* @returns {number}
|
||
|
*/
|
||
|
getOtherEnd(end) {
|
||
|
if (this.end1 === end) {
|
||
|
return this.end2;
|
||
|
}
|
||
|
return this.end1;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Read the position this scrambler is set to.
|
||
|
* Note that because of Enigma's stepping, you need to set an actual Enigma to the previous
|
||
|
* position in order to get it to make a certain set of electrical connections when a button
|
||
|
* is pressed - this function *does* take this into account.
|
||
|
* However, as with the rest of the Bombe, it does not take stepping into account - the middle
|
||
|
* and slow rotors are treated as static.
|
||
|
* @return {string}
|
||
|
*/
|
||
|
getPos() {
|
||
|
let result = "";
|
||
|
for (let i=0; i<this.rotors.length; i++) {
|
||
|
let pos = this.rotors[i].pos;
|
||
|
// Enigma steps *before* encrypting each character. This means we need to roll the fast
|
||
|
// rotor back by one before outputting it, to ensure the position is correct for the
|
||
|
// first character.
|
||
|
// As usual with the Bombe we do not take stepping of other rotors into account!
|
||
|
if (i === 0) {
|
||
|
pos = Utils.mod(pos - 1, 26);
|
||
|
}
|
||
|
result += i2a(pos);
|
||
|
}
|
||
|
return result.split("").reverse().join("");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Bombe simulator class.
|
||
|
*/
|
||
|
export class BombeMachine {
|
||
|
/**
|
||
|
* Construct a Bombe.
|
||
|
*
|
||
|
* Note that there is no handling of offsets here: the crib specified must exactly match the
|
||
|
* ciphertext. It will check that the crib is sane (length is vaguely sensible and there's no
|
||
|
* matching characters between crib and ciphertext) but cannot check further - if it's wrong
|
||
|
* your results will be wrong!
|
||
|
* @param {string[]} rotors - list of rotor spec strings (without step points!)
|
||
|
* @param {Object} reflector - Reflector object
|
||
|
* @param {string} ciphertext - The ciphertext to attack
|
||
|
* @param {string} crib - Known plaintext for this ciphertext
|
||
|
* @param {function} update - Function to call to send status updates (optional)
|
||
|
*/
|
||
|
constructor(rotors, reflector, ciphertext, crib, update=undefined) {
|
||
|
if (ciphertext.length !== crib.length) {
|
||
|
throw new OperationError("Ciphertext and crib length differ");
|
||
|
}
|
||
|
if (crib.length < 2) {
|
||
|
// This is the absolute bare minimum to be sane, and even then it's likely too short to
|
||
|
// be useful
|
||
|
throw new OperationError("Crib is too short");
|
||
|
}
|
||
|
if (crib.length > 25) {
|
||
|
// A crib longer than this will definitely cause the middle rotor to step somewhere
|
||
|
// A shorter crib is preferable to reduce this chance, of course
|
||
|
throw new OperationError("Crib is too long");
|
||
|
}
|
||
|
for (let i=0; i<ciphertext.length; i++) {
|
||
|
if (ciphertext[i] === crib[i]) {
|
||
|
throw new OperationError(`Invalid crib: character ${ciphertext[i]} at pos ${i} in both ciphertext and crib`);
|
||
|
}
|
||
|
}
|
||
|
this.ciphertext = ciphertext;
|
||
|
this.crib = crib;
|
||
|
// This is ordered from the Enigma fast rotor to the slow, so bottom to top for the Bombe
|
||
|
this.baseRotors = [];
|
||
|
for (const rstr of rotors) {
|
||
|
const rotor = new CopyRotor(rstr, "", "A", "A");
|
||
|
this.baseRotors.push(rotor);
|
||
|
}
|
||
|
this.updateFn = update;
|
||
|
|
||
|
const [mostConnected, edges] = this.makeMenu();
|
||
|
|
||
|
// This is the bundle of wires corresponding to the 26 letters within each of the 26
|
||
|
// possible nodes in the menu
|
||
|
this.wires = new Array(26*26).fill(false);
|
||
|
|
||
|
// These are the pseudo-Engima devices corresponding to each edge in the menu, and the
|
||
|
// nodes in the menu they each connect to
|
||
|
this.scramblers = new Array();
|
||
|
for (let i=0; i<26; i++) {
|
||
|
this.scramblers.push(new Array());
|
||
|
}
|
||
|
this.allScramblers = new Array();
|
||
|
this.indicator = undefined;
|
||
|
for (const edge of edges) {
|
||
|
const cRotors = [];
|
||
|
for (const r of this.baseRotors) {
|
||
|
cRotors.push(r.copy());
|
||
|
}
|
||
|
const end1 = a2i(edge.node1.letter);
|
||
|
const end2 = a2i(edge.node2.letter);
|
||
|
const scrambler = new Scrambler(cRotors, reflector, edge.pos, end1, end2);
|
||
|
if (edge.pos === 0) {
|
||
|
this.indicator = scrambler;
|
||
|
}
|
||
|
this.scramblers[end1].push(scrambler);
|
||
|
this.scramblers[end2].push(scrambler);
|
||
|
this.allScramblers.push(scrambler);
|
||
|
}
|
||
|
// The Bombe uses a set of rotors to keep track of what settings it's testing. We cheat and
|
||
|
// use one of the actual scramblers if there's one in the right position, but if not we'll
|
||
|
// just create one.
|
||
|
if (this.indicator === undefined) {
|
||
|
this.indicator = new Scrambler(this.baseRotors, reflector, 0, undefined);
|
||
|
this.allScramblers.push(this.indicator);
|
||
|
}
|
||
|
|
||
|
this.testRegister = a2i(mostConnected.letter);
|
||
|
// This is an arbitrary letter other than the most connected letter
|
||
|
for (const edge of mostConnected.edges) {
|
||
|
this.testInput = [this.testRegister, a2i(edge.getOther(mostConnected).letter)];
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* If we have a way of sending status messages, do so.
|
||
|
* @param {string} msg - Message to send.
|
||
|
*/
|
||
|
update(msg) {
|
||
|
if (this.updateFn !== undefined) {
|
||
|
this.updateFn(msg);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Recursive depth-first search on the menu graph.
|
||
|
* This is used to a) isolate unconnected sub-graphs, and b) count the number of loops in each
|
||
|
* of those graphs.
|
||
|
* @param {Object} node - Node object to start the search from
|
||
|
* @returns {[number, number, Object, number, Object[]} - loop count, node count, most connected
|
||
|
* node, order of most connected node, list of edges in this sub-graph
|
||
|
*/
|
||
|
dfs(node) {
|
||
|
let loops = 0;
|
||
|
let nNodes = 1;
|
||
|
let mostConnected = node;
|
||
|
let nConnections = mostConnected.edges.size;
|
||
|
let edges = new Set();
|
||
|
node.visited = true;
|
||
|
for (const edge of node.edges) {
|
||
|
if (edge.visited) {
|
||
|
// Already been here from the other end.
|
||
|
continue;
|
||
|
}
|
||
|
edge.visited = true;
|
||
|
edges.add(edge);
|
||
|
const other = edge.getOther(node);
|
||
|
if (other.visited) {
|
||
|
// We have a loop, record that and continue
|
||
|
loops += 1;
|
||
|
continue;
|
||
|
}
|
||
|
// This is a newly visited node
|
||
|
const [oLoops, oNNodes, oMostConnected, oNConnections, oEdges] = this.dfs(other);
|
||
|
loops += oLoops;
|
||
|
nNodes += oNNodes;
|
||
|
edges = new Set([...edges, ...oEdges]);
|
||
|
if (oNConnections > nConnections) {
|
||
|
mostConnected = oMostConnected;
|
||
|
nConnections = oNConnections;
|
||
|
}
|
||
|
}
|
||
|
return [loops, nNodes, mostConnected, nConnections, edges];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Build a menu from the ciphertext and crib.
|
||
|
* A menu is just a graph where letters in either the ciphertext or crib (Enigma is symmetric,
|
||
|
* so there's no difference mathematically) are nodes and states of the Enigma machine itself
|
||
|
* are the edges.
|
||
|
* Additionally, we want a single connected graph, and of the subgraphs available, we want the
|
||
|
* one with the most loops (since these generate feedback cycles which efficiently close off
|
||
|
* disallowed states).
|
||
|
* Finally, we want to identify the most connected node in that graph (as it's the best choice
|
||
|
* of measurement point).
|
||
|
* @returns [Object, Object[]] - the most connected node, and the list of edges in the subgraph
|
||
|
*/
|
||
|
makeMenu() {
|
||
|
// First, we make a graph of all of the mappings given by the crib
|
||
|
// Make all nodes first
|
||
|
const nodes = new Map();
|
||
|
for (const c of this.ciphertext + this.crib) {
|
||
|
if (!nodes.has(c)) {
|
||
|
const node = new Node(c);
|
||
|
nodes.set(c, node);
|
||
|
}
|
||
|
}
|
||
|
// Then all edges
|
||
|
for (let i=0; i<this.crib.length; i++) {
|
||
|
const a = this.crib[i];
|
||
|
const b = this.ciphertext[i];
|
||
|
new Edge(i, nodes.get(a), nodes.get(b));
|
||
|
}
|
||
|
// list of [loop_count, node_count, most_connected_node, connections_on_most_connected, edges]
|
||
|
const graphs = [];
|
||
|
// Then, for each unconnected subgraph, we count the number of loops and nodes
|
||
|
for (const start of nodes.keys()) {
|
||
|
if (nodes.get(start).visited) {
|
||
|
continue;
|
||
|
}
|
||
|
const subgraph = this.dfs(nodes.get(start));
|
||
|
graphs.push(subgraph);
|
||
|
}
|
||
|
// Return the subgraph with the most loops (ties broken by node count)
|
||
|
graphs.sort((a, b) => {
|
||
|
let result = b[0] - a[0];
|
||
|
if (result === 0) {
|
||
|
result = b[1] - a[1];
|
||
|
}
|
||
|
return result;
|
||
|
});
|
||
|
this.nLoops = graphs[0][0];
|
||
|
return [graphs[0][2], graphs[0][4]];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Implement Welchman's diagonal board: If A steckers to B, that implies B steckers to A, and
|
||
|
* so forth. This function just gets the paired wire.
|
||
|
* @param {number[2]} i - Bombe state wire
|
||
|
* @returns {number[2]}
|
||
|
*/
|
||
|
getDiagonal(i) {
|
||
|
return [i[1], i[0]];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Bombe electrical simulation. Energise a wire. For all connected wires (both via the diagonal
|
||
|
* board and via the scramblers), energise them too, recursively.
|
||
|
* @param {number[2]} i - Bombe state wire
|
||
|
*/
|
||
|
energise(i) {
|
||
|
const idx = 26*i[0] + i[1];
|
||
|
if (this.wires[idx]) {
|
||
|
return;
|
||
|
}
|
||
|
this.energiseCount ++;
|
||
|
this.wires[idx] = true;
|
||
|
this.energise(this.getDiagonal(i));
|
||
|
|
||
|
for (const scrambler of this.scramblers[i[0]]) {
|
||
|
const out = scrambler.transform(i[1]);
|
||
|
const other = scrambler.getOtherEnd(i[0]);
|
||
|
this.energise([other, out]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Having set up the Bombe, do the actual attack run. This tries every possible rotor setting
|
||
|
* and attempts to logically invalidate them. If it can't, it's added to the list of candidate
|
||
|
* solutions.
|
||
|
* @returns {string[][2]} - list of pairs of candidate rotor setting, and calculated stecker pair
|
||
|
*/
|
||
|
run() {
|
||
|
let stops = 0;
|
||
|
const result = [];
|
||
|
// For each possible rotor setting
|
||
|
const nChecks = Math.pow(26, this.baseRotors.length);
|
||
|
for (let i=1; i<=nChecks; i++) {
|
||
|
this.wires.fill(false);
|
||
|
// Energise the test input, follow the current through each scrambler
|
||
|
// (and the diagonal board)
|
||
|
this.energiseCount = 0;
|
||
|
this.energise(this.testInput);
|
||
|
// Count the energised outputs
|
||
|
let count = 0;
|
||
|
for (let j=26*this.testRegister; j<26*(1+this.testRegister); j++) {
|
||
|
if (this.wires[j]) {
|
||
|
count++;
|
||
|
}
|
||
|
}
|
||
|
// If it's not all of them, we have a stop
|
||
|
if (count < 26) {
|
||
|
stops += 1;
|
||
|
let stecker;
|
||
|
// The Bombe tells us one stecker pair as well. The input wire and test register we
|
||
|
// started with are hypothesised to be a stecker pair.
|
||
|
if (count === 25) {
|
||
|
// Our steckering hypothesis is wrong. Correct value is the un-energised wire.
|
||
|
for (let j=0; j<26; j++) {
|
||
|
if (!this.wires[26*this.testRegister + j]) {
|
||
|
stecker = `${i2a(this.testRegister)} <-> ${i2a(j)}`;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
} else if (count === 1) {
|
||
|
// This means our hypothesis for the steckering is correct.
|
||
|
stecker = `${i2a(this.testRegister)} <-> ${i2a(this.testInput[1])}`;
|
||
|
} else {
|
||
|
// Unusual, probably indicative of a poor menu. I'm a little unclear on how
|
||
|
// this was really handled, but we'll return it for the moment.
|
||
|
stecker = `? (wire count: ${count})`;
|
||
|
}
|
||
|
result.push([this.indicator.getPos(), stecker]);
|
||
|
}
|
||
|
// Step all the scramblers
|
||
|
// This loop counts how many rotors have reached their starting position (meaning the
|
||
|
// next one needs to step as well)
|
||
|
let n = 1;
|
||
|
for (let j=1; j<this.baseRotors.length; j++) {
|
||
|
if ((i % Math.pow(26, j)) === 0) {
|
||
|
n++;
|
||
|
} else {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
for (const scrambler of this.allScramblers) {
|
||
|
scrambler.step(n);
|
||
|
}
|
||
|
// Send status messages at what seems to be a reasonably sensible frequency
|
||
|
if (n > 2) {
|
||
|
const msg = `Bombe run with ${this.nLoops} loops in menu (2+ desirable): ${stops} stops, ${Math.floor(100 * i / nChecks)}% done`;
|
||
|
this.update(msg);
|
||
|
}
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
}
|