/** * This script automatically generates OperationConfig.json, containing metadata * for each opeartion in the src/core/operations directory. * It also generates modules in the src/core/config/modules directory to separate * out operations into logical collections. * * @author n1474335 [n1474335@gmail.com] * @copyright Crown Copyright 2018 * @license Apache-2.0 */ /*eslint no-console: ["off"] */ import path from "path"; import fs from "fs"; import process from "process"; import * as Ops from "../operations/index"; const dir = path.join(process.cwd() + "/src/core/config/"); if (!fs.existsSync(dir)) { console.log("\nCWD: " + process.cwd()); console.log("Error: generateConfig.mjs should be run from the project root"); console.log("Example> node --experimental-modules src/core/config/generateConfig.mjs"); process.exit(1); } const operationConfig = {}, modules = {}; /** * Generate operation config and module lists. */ for (const opObj in Ops) { const op = new Ops[opObj](); operationConfig[op.name] = { module: op.module, description: op.description, inputType: op.inputType, outputType: op.outputType, flowControl: op.flowControl, args: op.args }; if (!modules.hasOwnProperty(op.module)) modules[op.module] = {}; modules[op.module][op.name] = opObj; } /** * Write OperationConfig. */ fs.writeFile( path.join(dir, "OperationConfig.json"), JSON.stringify(operationConfig, null, 4), err => { if (err) { console.error(err); process.exit(1); } } ); /** * Write modules. */ for (const module in modules) { let code = `/** * THIS FILE IS AUTOMATICALLY GENERATED BY src/core/config/generateConfig.mjs * * @author n1474335 [n1474335@gmail.com] * @copyright Crown Copyright ${new Date().getUTCFullYear()} * @license Apache-2.0 */ `; for (const opName in modules[module]) { const objName = modules[module][opName]; code += `import ${objName} from "../../operations/${objName}";\n`; } code += ` const OpModules = typeof self === "undefined" ? {} : self.OpModules || {}; OpModules.${module} = { `; for (const opName in modules[module]) { const objName = modules[module][opName]; code += ` "${opName}": ${objName},\n`; } code += `}; export default OpModules; `; fs.writeFile( path.join(dir, `modules/${module}.mjs`), code, err => { if (err) { console.error(err); process.exit(1); } } ); } /** * Write OpModules wrapper. */ let opModulesCode = `/** * THIS FILE IS AUTOMATICALLY GENERATED BY src/core/config/generateConfig.mjs * * Imports all modules for builds which do not load modules separately. * * @author n1474335 [n1474335@gmail.com] * @copyright Crown Copyright ${new Date().getUTCFullYear()} * @license Apache-2.0 */ `; for (const module in modules) { opModulesCode += `import ${module}Module from "./${module}";\n`; } opModulesCode += ` const OpModules = {}; Object.assign( OpModules, `; for (const module in modules) { opModulesCode += ` ${module}Module,\n`; } opModulesCode += `); export default OpModules; `; fs.writeFile( path.join(dir, "modules/OpModules.mjs"), opModulesCode, err => { if (err) { console.error(err); process.exit(1); } } ); /*"Fork": { module: "Default", description: "Split the input data up based on the specified delimiter and run all subsequent operations on each branch separately.

For example, to decode multiple Base64 strings, enter them all on separate lines then add the 'Fork' and 'From Base64' operations to the recipe. Each string will be decoded separately.", inputType: "string", outputType: "string", flowControl: true, args: [ { name: "Split delimiter", type: "binaryShortString", value: "\\n" }, { name: "Merge delimiter", type: "binaryShortString", value: "\\n" }, { name: "Ignore errors", type: "boolean", value: false } ] }, "Merge": { module: "Default", description: "Consolidate all branches back into a single trunk. The opposite of Fork.", inputType: "string", outputType: "string", flowControl: true, args: [] }, "Register": { module: "Default", description: "Extract data from the input and store it in registers which can then be passed into subsequent operations as arguments. Regular expression capture groups are used to select the data to extract.

To use registers in arguments, refer to them using the notation $Rn where n is the register number, starting at 0.

For example:
Input: Test
Extractor: (.*)
Argument: $R0 becomes Test

Registers can be escaped in arguments using a backslash. e.g. \\$R0 would become $R0 rather than Test.", inputType: "string", outputType: "string", flowControl: true, args: [ { name: "Extractor", type: "binaryString", value: "([\\s\\S]*)" }, { name: "Case insensitive", type: "boolean", value: true }, { name: "Multiline matching", type: "boolean", value: false }, ] }, "Jump": { module: "Default", description: "Jump forwards or backwards to the specified Label", inputType: "string", outputType: "string", flowControl: true, args: [ { name: "Label name", type: "string", value: "" }, { name: "Maximum jumps (if jumping backwards)", type: "number", value: 10 } ] }, "Conditional Jump": { module: "Default", description: "Conditionally jump forwards or backwards to the specified Label based on whether the data matches the specified regular expression.", inputType: "string", outputType: "string", flowControl: true, args: [ { name: "Match (regex)", type: "string", value: "" }, { name: "Invert match", type: "boolean", value: false }, { name: "Label name", type: "shortString", value: "" }, { name: "Maximum jumps (if jumping backwards)", type: "number", value: 10 } ] }, "Label": { module: "Default", description: "Provides a location for conditional and fixed jumps to redirect execution to.", inputType: "string", outputType: "string", flowControl: true, args: [ { name: "Name", type: "shortString", value: "" } ] }, "Return": { module: "Default", description: "End execution of operations at this point in the recipe.", inputType: "string", outputType: "string", flowControl: true, args: [] }, "Comment": { module: "Default", description: "Provides a place to write comments within the flow of the recipe. This operation has no computational effect.", inputType: "string", outputType: "string", flowControl: true, args: [ { name: "", type: "text", value: "" } ] }, "From Base64": { module: "Default", description: "Base64 is a notation for encoding arbitrary byte data using a restricted set of symbols that can be conveniently used by humans and processed by computers.

This operation decodes data from an ASCII Base64 string back into its raw format.

e.g. aGVsbG8= becomes hello", highlight: "func", highlightReverse: "func", inputType: "string", outputType: "byteArray", args: [ { name: "Alphabet", type: "editableOption", value: Base64.ALPHABET_OPTIONS }, { name: "Remove non-alphabet chars", type: "boolean", value: Base64.REMOVE_NON_ALPH_CHARS } ] }, "To Base64": { module: "Default", description: "Base64 is a notation for encoding arbitrary byte data using a restricted set of symbols that can be conveniently used by humans and processed by computers.

This operation encodes data in an ASCII Base64 string.

e.g. hello becomes aGVsbG8=", highlight: "func", highlightReverse: "func", inputType: "ArrayBuffer", outputType: "string", args: [ { name: "Alphabet", type: "editableOption", value: Base64.ALPHABET_OPTIONS }, ] }, };*/ /* "From Base58": { module: "Default", description: "Base58 (similar to Base64) is a notation for encoding arbitrary byte data. It differs from Base64 by removing easily misread characters (i.e. l, I, 0 and O) to improve human readability.

This operation decodes data from an ASCII string (with an alphabet of your choosing, presets included) back into its raw form.

e.g. StV1DL6CwTryKyV becomes hello world

Base58 is commonly used in cryptocurrencies (Bitcoin, Ripple, etc).", inputType: "string", outputType: "byteArray", args: [ { name: "Alphabet", type: "editableOption", value: Base58.ALPHABET_OPTIONS }, { name: "Remove non-alphabet chars", type: "boolean", value: Base58.REMOVE_NON_ALPH_CHARS } ] }, "To Base58": { module: "Default", description: "Base58 (similar to Base64) is a notation for encoding arbitrary byte data. It differs from Base64 by removing easily misread characters (i.e. l, I, 0 and O) to improve human readability.

This operation encodes data in an ASCII string (with an alphabet of your choosing, presets included).

e.g. hello world becomes StV1DL6CwTryKyV

Base58 is commonly used in cryptocurrencies (Bitcoin, Ripple, etc).", inputType: "byteArray", outputType: "string", args: [ { name: "Alphabet", type: "editableOption", value: Base58.ALPHABET_OPTIONS }, ] }, "From Base32": { module: "Default", description: "Base32 is a notation for encoding arbitrary byte data using a restricted set of symbols that can be conveniently used by humans and processed by computers. It uses a smaller set of characters than Base64, usually the uppercase alphabet and the numbers 2 to 7.", inputType: "string", outputType: "byteArray", args: [ { name: "Alphabet", type: "binaryString", value: Base64.BASE32_ALPHABET }, { name: "Remove non-alphabet chars", type: "boolean", value: Base64.REMOVE_NON_ALPH_CHARS } ] }, "To Base32": { module: "Default", description: "Base32 is a notation for encoding arbitrary byte data using a restricted set of symbols that can be conveniently used by humans and processed by computers. It uses a smaller set of characters than Base64, usually the uppercase alphabet and the numbers 2 to 7.", inputType: "byteArray", outputType: "string", args: [ { name: "Alphabet", type: "binaryString", value: Base64.BASE32_ALPHABET } ] }, "Show Base64 offsets": { module: "Default", description: "When a string is within a block of data and the whole block is Base64'd, the string itself could be represented in Base64 in three distinct ways depending on its offset within the block.

This operation shows all possible offsets for a given string so that each possible encoding can be considered.", inputType: "byteArray", outputType: "html", args: [ { name: "Alphabet", type: "binaryString", value: Base64.ALPHABET }, { name: "Show variable chars and padding", type: "boolean", value: Base64.OFFSETS_SHOW_VARIABLE } ] }, "Disassemble x86": { module: "Shellcode", description: "Disassembly is the process of translating machine language into assembly language.

This operation supports 64-bit, 32-bit and 16-bit code written for Intel or AMD x86 processors. It is particularly useful for reverse engineering shellcode.

Input should be in hexadecimal.", inputType: "string", outputType: "string", args: [ { name: "Bit mode", type: "option", value: Shellcode.MODE }, { name: "Compatibility", type: "option", value: Shellcode.COMPATIBILITY }, { name: "Code Segment (CS)", type: "number", value: 16 }, { name: "Offset (IP)", type: "number", value: 0 }, { name: "Show instruction hex", type: "boolean", value: true }, { name: "Show instruction position", type: "boolean", value: true } ] }, "XOR": { module: "Default", description: "XOR the input with the given key.
e.g. fe023da5

Options
Null preserving: If the current byte is 0x00 or the same as the key, skip it.

Scheme:", highlight: true, highlightReverse: true, inputType: "byteArray", outputType: "byteArray", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: BitwiseOp.KEY_FORMAT }, { name: "Scheme", type: "option", value: BitwiseOp.XOR_SCHEME }, { name: "Null preserving", type: "boolean", value: BitwiseOp.XOR_PRESERVE_NULLS } ] }, "XOR Brute Force": { module: "Default", description: "Enumerate all possible XOR solutions. Current maximum key length is 2 due to browser performance.

Optionally enter a string that you expect to find in the plaintext to filter results (crib).", inputType: "byteArray", outputType: "string", args: [ { name: "Key length", type: "number", value: BitwiseOp.XOR_BRUTE_KEY_LENGTH }, { name: "Sample length", type: "number", value: BitwiseOp.XOR_BRUTE_SAMPLE_LENGTH }, { name: "Sample offset", type: "number", value: BitwiseOp.XOR_BRUTE_SAMPLE_OFFSET }, { name: "Scheme", type: "option", value: BitwiseOp.XOR_SCHEME }, { name: "Null preserving", type: "boolean", value: BitwiseOp.XOR_PRESERVE_NULLS }, { name: "Print key", type: "boolean", value: BitwiseOp.XOR_BRUTE_PRINT_KEY }, { name: "Output as hex", type: "boolean", value: BitwiseOp.XOR_BRUTE_OUTPUT_HEX }, { name: "Crib (known plaintext string)", type: "binaryString", value: "" } ] }, "NOT": { module: "Default", description: "Returns the inverse of each byte.", highlight: true, highlightReverse: true, inputType: "byteArray", outputType: "byteArray", args: [] }, "AND": { module: "Default", description: "AND the input with the given key.
e.g. fe023da5", highlight: true, highlightReverse: true, inputType: "byteArray", outputType: "byteArray", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: BitwiseOp.KEY_FORMAT } ] }, "OR": { module: "Default", description: "OR the input with the given key.
e.g. fe023da5", highlight: true, highlightReverse: true, inputType: "byteArray", outputType: "byteArray", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: BitwiseOp.KEY_FORMAT } ] }, "ADD": { module: "Default", description: "ADD the input with the given key (e.g. fe023da5), MOD 255", highlight: true, highlightReverse: true, inputType: "byteArray", outputType: "byteArray", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: BitwiseOp.KEY_FORMAT } ] }, "SUB": { module: "Default", description: "SUB the input with the given key (e.g. fe023da5), MOD 255", highlight: true, highlightReverse: true, inputType: "byteArray", outputType: "byteArray", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: BitwiseOp.KEY_FORMAT } ] }, "Sum": { module: "Default", description: "Adds together a list of numbers. If an item in the string is not a number it is excluded from the list.

e.g. 0x0a 8 .5 becomes 18.5", inputType: "string", outputType: "BigNumber", args: [ { name: "Delimiter", type: "option", value: Arithmetic.DELIM_OPTIONS } ] }, "Subtract": { module: "Default", description: "Subtracts a list of numbers. If an item in the string is not a number it is excluded from the list.

e.g. 0x0a 8 .5 becomes 1.5", inputType: "string", outputType: "BigNumber", args: [ { name: "Delimiter", type: "option", value: Arithmetic.DELIM_OPTIONS } ] }, "Multiply": { module: "Default", description: "Multiplies a list of numbers. If an item in the string is not a number it is excluded from the list.

e.g. 0x0a 8 .5 becomes 40", inputType: "string", outputType: "BigNumber", args: [ { name: "Delimiter", type: "option", value: Arithmetic.DELIM_OPTIONS } ] }, "Divide": { module: "Default", description: "Divides a list of numbers. If an item in the string is not a number it is excluded from the list.

e.g. 0x0a 8 .5 becomes 2.5", inputType: "string", outputType: "BigNumber", args: [ { name: "Delimiter", type: "option", value: Arithmetic.DELIM_OPTIONS } ] }, "Mean": { module: "Default", description: "Computes the mean (average) of a number list. If an item in the string is not a number it is excluded from the list.

e.g. 0x0a 8 .5 .5 becomes 4.75", inputType: "string", outputType: "BigNumber", args: [ { name: "Delimiter", type: "option", value: Arithmetic.DELIM_OPTIONS } ] }, "Median": { module: "Default", description: "Computes the median of a number list. If an item in the string is not a number it is excluded from the list.

e.g. 0x0a 8 1 .5 becomes 4.5", inputType: "string", outputType: "BigNumber", args: [ { name: "Delimiter", type: "option", value: Arithmetic.DELIM_OPTIONS } ] }, "Standard Deviation": { module: "Default", description: "Computes the standard deviation of a number list. If an item in the string is not a number it is excluded from the list.

e.g. 0x0a 8 .5 becomes 4.089281382128433", inputType: "string", outputType: "BigNumber", args: [ { name: "Delimiter", type: "option", value: Arithmetic.DELIM_OPTIONS } ] }, "From Hex": { module: "Default", description: "Converts a hexadecimal byte string back into its raw value.

e.g. ce 93 ce b5 ce b9 ce ac 20 cf 83 ce bf cf 85 0a becomes the UTF-8 encoded string Γειά σου", highlight: "func", highlightReverse: "func", inputType: "string", outputType: "byteArray", args: [ { name: "Delimiter", type: "option", value: ByteRepr.HEX_DELIM_OPTIONS } ] }, "To Hex": { module: "Default", description: "Converts the input string to hexadecimal bytes separated by the specified delimiter.

e.g. The UTF-8 encoded string Γειά σου becomes ce 93 ce b5 ce b9 ce ac 20 cf 83 ce bf cf 85 0a", highlight: "func", highlightReverse: "func", inputType: "ArrayBuffer", outputType: "string", args: [ { name: "Delimiter", type: "option", value: ByteRepr.HEX_DELIM_OPTIONS } ] }, "From Octal": { module: "Default", description: "Converts an octal byte string back into its raw value.

e.g. 316 223 316 265 316 271 316 254 40 317 203 316 277 317 205 becomes the UTF-8 encoded string Γειά σου", highlight: false, highlightReverse: false, inputType: "string", outputType: "byteArray", args: [ { name: "Delimiter", type: "option", value: ByteRepr.DELIM_OPTIONS } ] }, "To Octal": { module: "Default", description: "Converts the input string to octal bytes separated by the specified delimiter.

e.g. The UTF-8 encoded string Γειά σου becomes 316 223 316 265 316 271 316 254 40 317 203 316 277 317 205", highlight: false, highlightReverse: false, inputType: "byteArray", outputType: "string", args: [ { name: "Delimiter", type: "option", value: ByteRepr.DELIM_OPTIONS } ] }, "From Charcode": { module: "Default", description: "Converts unicode character codes back into text.

e.g. 0393 03b5 03b9 03ac 20 03c3 03bf 03c5 becomes Γειά σου", highlight: "func", highlightReverse: "func", inputType: "string", outputType: "byteArray", args: [ { name: "Delimiter", type: "option", value: ByteRepr.DELIM_OPTIONS }, { name: "Base", type: "number", value: ByteRepr.CHARCODE_BASE } ] }, "To Charcode": { module: "Default", description: "Converts text to its unicode character code equivalent.

e.g. Γειά σου becomes 0393 03b5 03b9 03ac 20 03c3 03bf 03c5", highlight: "func", highlightReverse: "func", inputType: "string", outputType: "string", args: [ { name: "Delimiter", type: "option", value: ByteRepr.DELIM_OPTIONS }, { name: "Base", type: "number", value: ByteRepr.CHARCODE_BASE } ] }, "From Binary": { module: "Default", description: "Converts a binary string back into its raw form.

e.g. 01001000 01101001 becomes Hi", highlight: "func", highlightReverse: "func", inputType: "string", outputType: "byteArray", args: [ { name: "Delimiter", type: "option", value: ByteRepr.BIN_DELIM_OPTIONS } ] }, "To Binary": { module: "Default", description: "Displays the input data as a binary string.

e.g. Hi becomes 01001000 01101001", highlight: "func", highlightReverse: "func", inputType: "byteArray", outputType: "string", args: [ { name: "Delimiter", type: "option", value: ByteRepr.BIN_DELIM_OPTIONS } ] }, "From Decimal": { module: "Default", description: "Converts the data from an ordinal integer array back into its raw form.

e.g. 72 101 108 108 111 becomes Hello", inputType: "string", outputType: "byteArray", args: [ { name: "Delimiter", type: "option", value: ByteRepr.DELIM_OPTIONS } ] }, "To Decimal": { module: "Default", description: "Converts the input data to an ordinal integer array.

e.g. Hello becomes 72 101 108 108 111", inputType: "byteArray", outputType: "string", args: [ { name: "Delimiter", type: "option", value: ByteRepr.DELIM_OPTIONS } ] }, "From Hexdump": { module: "Default", description: "Attempts to convert a hexdump back into raw data. This operation supports many different hexdump variations, but probably not all. Make sure you verify that the data it gives you is correct before continuing analysis.", highlight: "func", highlightReverse: "func", inputType: "string", outputType: "byteArray", args: [] }, "To Hexdump": { module: "Default", description: "Creates a hexdump of the input data, displaying both the hexadecimal values of each byte and an ASCII representation alongside.", highlight: "func", highlightReverse: "func", inputType: "ArrayBuffer", outputType: "string", args: [ { name: "Width", type: "number", value: Hexdump.WIDTH }, { name: "Upper case hex", type: "boolean", value: Hexdump.UPPER_CASE }, { name: "Include final length", type: "boolean", value: Hexdump.INCLUDE_FINAL_LENGTH } ] }, "From Base": { module: "Default", description: "Converts a number to decimal from a given numerical base.", inputType: "string", outputType: "BigNumber", args: [ { name: "Radix", type: "number", value: Base.DEFAULT_RADIX } ] }, "To Base": { module: "Default", description: "Converts a decimal number to a given numerical base.", inputType: "BigNumber", outputType: "string", args: [ { name: "Radix", type: "number", value: Base.DEFAULT_RADIX } ] }, "From HTML Entity": { module: "Default", description: "Converts HTML entities back to characters

e.g. & becomes &", // tags required to stop the browser just printing & inputType: "string", outputType: "string", args: [] }, "To HTML Entity": { module: "Default", description: "Converts characters to HTML entities

e.g. & becomes &", // tags required to stop the browser just printing & inputType: "string", outputType: "string", args: [ { name: "Convert all characters", type: "boolean", value: HTML.CONVERT_ALL }, { name: "Convert to", type: "option", value: HTML.CONVERT_OPTIONS } ] }, "Strip HTML tags": { module: "Default", description: "Removes all HTML tags from the input.", inputType: "string", outputType: "string", args: [ { name: "Remove indentation", type: "boolean", value: HTML.REMOVE_INDENTATION }, { name: "Remove excess line breaks", type: "boolean", value: HTML.REMOVE_LINE_BREAKS } ] }, "URL Decode": { module: "URL", description: "Converts URI/URL percent-encoded characters back to their raw values.

e.g. %3d becomes =", inputType: "string", outputType: "string", args: [] }, "URL Encode": { module: "URL", description: "Encodes problematic characters into percent-encoding, a format supported by URIs/URLs.

e.g. = becomes %3d", inputType: "string", outputType: "string", args: [ { name: "Encode all special chars", type: "boolean", value: URL_.ENCODE_ALL } ] }, "Parse URI": { module: "URL", description: "Pretty prints complicated Uniform Resource Identifier (URI) strings for ease of reading. Particularly useful for Uniform Resource Locators (URLs) with a lot of arguments.", inputType: "string", outputType: "string", args: [] }, "Unescape Unicode Characters": { module: "Default", description: "Converts unicode-escaped character notation back into raw characters.

Supports the prefixes:e.g. \\u03c3\\u03bf\\u03c5 becomes σου", inputType: "string", outputType: "string", args: [ { name: "Prefix", type: "option", value: Unicode.PREFIXES } ] }, "Escape Unicode Characters": { module: "Default", description: "Converts characters to their unicode-escaped notations.

Supports the prefixes:e.g. σου becomes \\u03C3\\u03BF\\u03C5", inputType: "string", outputType: "string", args: [ { name: "Prefix", type: "option", value: Unicode.PREFIXES }, { name: "Encode all chars", type: "boolean", value: false }, { name: "Padding", type: "number", value: 4 }, { name: "Uppercase hex", type: "boolean", value: true } ] }, "From Quoted Printable": { module: "Default", description: "Converts QP-encoded text back to standard text.", inputType: "string", outputType: "byteArray", args: [] }, "To Quoted Printable": { module: "Default", description: "Quoted-Printable, or QP encoding, is an encoding using printable ASCII characters (alphanumeric and the equals sign '=') to transmit 8-bit data over a 7-bit data path or, generally, over a medium which is not 8-bit clean. It is defined as a MIME content transfer encoding for use in e-mail.

QP works by using the equals sign '=' as an escape character. It also limits line length to 76, as some software has limits on line length.", inputType: "byteArray", outputType: "string", args: [] }, "From Punycode": { module: "Encodings", description: "Punycode is a way to represent Unicode with the limited character subset of ASCII supported by the Domain Name System.

e.g. mnchen-3ya decodes to münchen", inputType: "string", outputType: "string", args: [ { name: "Internationalised domain name", type: "boolean", value: Punycode.IDN } ] }, "To Punycode": { module: "Encodings", description: "Punycode is a way to represent Unicode with the limited character subset of ASCII supported by the Domain Name System.

e.g. münchen encodes to mnchen-3ya", inputType: "string", outputType: "string", args: [ { name: "Internationalised domain name", type: "boolean", value: Punycode.IDN } ] }, "From Hex Content": { module: "Default", description: "Translates hexadecimal bytes in text back to raw bytes.

e.g. foo|3d|bar becomes foo=bar.", inputType: "string", outputType: "byteArray", args: [] }, "To Hex Content": { module: "Default", description: "Converts special characters in a string to hexadecimal.

e.g. foo=bar becomes foo|3d|bar.", inputType: "byteArray", outputType: "string", args: [ { name: "Convert", type: "option", value: ByteRepr.HEX_CONTENT_CONVERT_WHICH }, { name: "Print spaces between bytes", type: "boolean", value: ByteRepr.HEX_CONTENT_SPACES_BETWEEN_BYTES }, ] }, "Change IP format": { module: "JSBN", description: "Convert an IP address from one format to another, e.g. 172.20.23.54 to ac141736", inputType: "string", outputType: "string", args: [ { name: "Input format", type: "option", value: IP.IP_FORMAT_LIST }, { name: "Output format", type: "option", value: IP.IP_FORMAT_LIST } ] }, "Parse IP range": { module: "JSBN", description: "Given a CIDR range (e.g. 10.0.0.0/24) or a hyphenated range (e.g. 10.0.0.0 - 10.0.1.0), this operation provides network information and enumerates all IP addresses in the range.

IPv6 is supported but will not be enumerated.", inputType: "string", outputType: "string", args: [ { name: "Include network info", type: "boolean", value: IP.INCLUDE_NETWORK_INFO }, { name: "Enumerate IP addresses", type: "boolean", value: IP.ENUMERATE_ADDRESSES }, { name: "Allow large queries", type: "boolean", value: IP.ALLOW_LARGE_LIST } ] }, "Group IP addresses": { module: "JSBN", description: "Groups a list of IP addresses into subnets. Supports both IPv4 and IPv6 addresses.", inputType: "string", outputType: "string", args: [ { name: "Delimiter", type: "option", value: IP.DELIM_OPTIONS }, { name: "Subnet (CIDR)", type: "number", value: IP.GROUP_CIDR }, { name: "Only show the subnets", type: "boolean", value: IP.GROUP_ONLY_SUBNET } ] }, "Parse IPv6 address": { module: "JSBN", description: "Displays the longhand and shorthand versions of a valid IPv6 address.

Recognises all reserved ranges and parses encapsulated or tunnelled addresses including Teredo and 6to4.", inputType: "string", outputType: "string", args: [] }, "Parse IPv4 header": { module: "JSBN", description: "Given an IPv4 header, this operations parses and displays each field in an easily readable format.", inputType: "string", outputType: "html", args: [ { name: "Input format", type: "option", value: IP.IP_HEADER_FORMAT } ] }, "Encode text": { module: "CharEnc", description: [ "Encodes text into the chosen character encoding.", "

", "Supported charsets are:", "", ].join("\n"), inputType: "string", outputType: "byteArray", args: [ { name: "Encoding", type: "option", value: Object.keys(CharEnc.IO_FORMAT), }, ] }, "Decode text": { module: "CharEnc", description: [ "Decodes text from the chosen character encoding.", "

", "Supported charsets are:", "", ].join("\n"), inputType: "byteArray", outputType: "string", args: [ { name: "Encoding", type: "option", value: Object.keys(CharEnc.IO_FORMAT), }, ] }, "AES Decrypt": { module: "Ciphers", description: "Advanced Encryption Standard (AES) is a U.S. Federal Information Processing Standard (FIPS). It was selected after a 5-year process where 15 competing designs were evaluated.

Key: The following algorithms will be used based on the size of the key:

IV: The Initialization Vector should be 16 bytes long. If not entered, it will default to 16 null bytes.

Padding: In CBC and ECB mode, PKCS#7 padding will be used.

GCM Tag: This field is ignored unless 'GCM' mode is used.", inputType: "string", outputType: "string", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "IV", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "Mode", type: "option", value: Cipher.AES_MODES }, { name: "Input", type: "option", value: Cipher.IO_FORMAT4 }, { name: "Output", type: "option", value: Cipher.IO_FORMAT3 }, { name: "GCM Tag", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, ] }, "AES Encrypt": { module: "Ciphers", description: "Advanced Encryption Standard (AES) is a U.S. Federal Information Processing Standard (FIPS). It was selected after a 5-year process where 15 competing designs were evaluated.

Key: The following algorithms will be used based on the size of the key:You can generate a password-based key using one of the KDF operations.

IV: The Initialization Vector should be 16 bytes long. If not entered, it will default to 16 null bytes.

Padding: In CBC and ECB mode, PKCS#7 padding will be used.", inputType: "string", outputType: "string", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "IV", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "Mode", type: "option", value: Cipher.AES_MODES }, { name: "Input", type: "option", value: Cipher.IO_FORMAT3 }, { name: "Output", type: "option", value: Cipher.IO_FORMAT4 }, ] }, "DES Decrypt": { module: "Ciphers", description: "DES is a previously dominant algorithm for encryption, and was published as an official U.S. Federal Information Processing Standard (FIPS). It is now considered to be insecure due to its small key size.

Key: DES uses a key length of 8 bytes (64 bits).
Triple DES uses a key length of 24 bytes (192 bits).

IV: The Initialization Vector should be 8 bytes long. If not entered, it will default to 8 null bytes.

Padding: In CBC and ECB mode, PKCS#7 padding will be used.", inputType: "string", outputType: "string", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "IV", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "Mode", type: "option", value: Cipher.DES_MODES }, { name: "Input", type: "option", value: Cipher.IO_FORMAT4 }, { name: "Output", type: "option", value: Cipher.IO_FORMAT3 }, ] }, "DES Encrypt": { module: "Ciphers", description: "DES is a previously dominant algorithm for encryption, and was published as an official U.S. Federal Information Processing Standard (FIPS). It is now considered to be insecure due to its small key size.

Key: DES uses a key length of 8 bytes (64 bits).
Triple DES uses a key length of 24 bytes (192 bits).

You can generate a password-based key using one of the KDF operations.

IV: The Initialization Vector should be 8 bytes long. If not entered, it will default to 8 null bytes.

Padding: In CBC and ECB mode, PKCS#7 padding will be used.", inputType: "string", outputType: "string", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "IV", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "Mode", type: "option", value: Cipher.DES_MODES }, { name: "Input", type: "option", value: Cipher.IO_FORMAT3 }, { name: "Output", type: "option", value: Cipher.IO_FORMAT4 }, ] }, "Triple DES Decrypt": { module: "Ciphers", description: "Triple DES applies DES three times to each block to increase key size.

Key: Triple DES uses a key length of 24 bytes (192 bits).
DES uses a key length of 8 bytes (64 bits).

IV: The Initialization Vector should be 8 bytes long. If not entered, it will default to 8 null bytes.

Padding: In CBC and ECB mode, PKCS#7 padding will be used.", inputType: "string", outputType: "string", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "IV", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "Mode", type: "option", value: Cipher.DES_MODES }, { name: "Input", type: "option", value: Cipher.IO_FORMAT4 }, { name: "Output", type: "option", value: Cipher.IO_FORMAT3 }, ] }, "Triple DES Encrypt": { module: "Ciphers", description: "Triple DES applies DES three times to each block to increase key size.

Key: Triple DES uses a key length of 24 bytes (192 bits).
DES uses a key length of 8 bytes (64 bits).

You can generate a password-based key using one of the KDF operations.

IV: The Initialization Vector should be 8 bytes long. If not entered, it will default to 8 null bytes.

Padding: In CBC and ECB mode, PKCS#7 padding will be used.", inputType: "string", outputType: "string", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "IV", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "Mode", type: "option", value: Cipher.DES_MODES }, { name: "Input", type: "option", value: Cipher.IO_FORMAT3 }, { name: "Output", type: "option", value: Cipher.IO_FORMAT4 }, ] }, "Blowfish Decrypt": { module: "Ciphers", description: "Blowfish is a symmetric-key block cipher designed in 1993 by Bruce Schneier and included in a large number of cipher suites and encryption products. AES now receives more attention.

IV: The Initialization Vector should be 8 bytes long. If not entered, it will default to 8 null bytes.", inputType: "string", outputType: "string", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "IV", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "Mode", type: "option", value: Cipher.BLOWFISH_MODES }, { name: "Input", type: "option", value: Cipher.BLOWFISH_OUTPUT_TYPES }, { name: "Output", type: "option", value: Cipher.IO_FORMAT3 }, ] }, "Blowfish Encrypt": { module: "Ciphers", description: "Blowfish is a symmetric-key block cipher designed in 1993 by Bruce Schneier and included in a large number of cipher suites and encryption products. AES now receives more attention.

IV: The Initialization Vector should be 8 bytes long. If not entered, it will default to 8 null bytes.", inputType: "string", outputType: "string", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "IV", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "Mode", type: "option", value: Cipher.BLOWFISH_MODES }, { name: "Input", type: "option", value: Cipher.IO_FORMAT3 }, { name: "Output", type: "option", value: Cipher.BLOWFISH_OUTPUT_TYPES }, ] }, "RC4": { module: "Ciphers", description: "RC4 (also known as ARC4) is a widely-used stream cipher designed by Ron Rivest. It is used in popular protocols such as SSL and WEP. Although remarkable for its simplicity and speed, the algorithm's history doesn't inspire confidence in its security.", highlight: true, highlightReverse: true, inputType: "string", outputType: "string", args: [ { name: "Passphrase", type: "toggleString", value: "", toggleValues: Cipher.RC4_KEY_FORMAT }, { name: "Input format", type: "option", value: Cipher.CJS_IO_FORMAT }, { name: "Output format", type: "option", value: Cipher.CJS_IO_FORMAT }, ] }, "RC4 Drop": { module: "Ciphers", description: "It was discovered that the first few bytes of the RC4 keystream are strongly non-random and leak information about the key. We can defend against this attack by discarding the initial portion of the keystream. This modified algorithm is traditionally called RC4-drop.", highlight: true, highlightReverse: true, inputType: "string", outputType: "string", args: [ { name: "Passphrase", type: "toggleString", value: "", toggleValues: Cipher.RC4_KEY_FORMAT }, { name: "Input format", type: "option", value: Cipher.CJS_IO_FORMAT }, { name: "Output format", type: "option", value: Cipher.CJS_IO_FORMAT }, { name: "Number of bytes to drop", type: "number", value: Cipher.RC4DROP_BYTES }, ] }, "RC2 Decrypt": { module: "Ciphers", description: "RC2 (also known as ARC2) is a symmetric-key block cipher designed by Ron Rivest in 1987. 'RC' stands for 'Rivest Cipher'.

Key: RC2 uses a variable size key.

IV: To run the cipher in CBC mode, the Initialization Vector should be 8 bytes long. If the IV is left blank, the cipher will run in ECB mode.

Padding: In both CBC and ECB mode, PKCS#7 padding will be used.", inputType: "string", outputType: "string", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "IV", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "Input", type: "option", value: Cipher.IO_FORMAT4 }, { name: "Output", type: "option", value: Cipher.IO_FORMAT3 }, ] }, "RC2 Encrypt": { module: "Ciphers", description: "RC2 (also known as ARC2) is a symmetric-key block cipher designed by Ron Rivest in 1987. 'RC' stands for 'Rivest Cipher'.

Key: RC2 uses a variable size key.

You can generate a password-based key using one of the KDF operations.

IV: To run the cipher in CBC mode, the Initialization Vector should be 8 bytes long. If the IV is left blank, the cipher will run in ECB mode.

Padding: In both CBC and ECB mode, PKCS#7 padding will be used.", inputType: "string", outputType: "string", args: [ { name: "Key", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "IV", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, { name: "Input", type: "option", value: Cipher.IO_FORMAT3 }, { name: "Output", type: "option", value: Cipher.IO_FORMAT4 }, ] }, "Pseudo-Random Number Generator": { module: "Ciphers", description: "A cryptographically-secure pseudo-random number generator (PRNG).

This operation uses the browser's built-in crypto.getRandomValues() method if available. If this cannot be found, it falls back to a Fortuna-based PRNG algorithm.", inputType: "string", outputType: "string", args: [ { name: "Number of bytes", type: "number", value: Cipher.PRNG_BYTES }, { name: "Output as", type: "option", value: Cipher.PRNG_OUTPUT } ] }, "Derive PBKDF2 key": { module: "Ciphers", description: "PBKDF2 is a password-based key derivation function. It is part of RSA Laboratories' Public-Key Cryptography Standards (PKCS) series, specifically PKCS #5 v2.0, also published as Internet Engineering Task Force's RFC 2898.

In many applications of cryptography, user security is ultimately dependent on a password, and because a password usually can't be used directly as a cryptographic key, some processing is required.

A salt provides a large set of keys for any given password, and an iteration count increases the cost of producing keys from a password, thereby also increasing the difficulty of attack.

If you leave the salt argument empty, a random salt will be generated.", inputType: "string", outputType: "string", args: [ { name: "Passphrase", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT2 }, { name: "Key size", type: "number", value: Cipher.KDF_KEY_SIZE }, { name: "Iterations", type: "number", value: Cipher.KDF_ITERATIONS }, { name: "Hashing function", type: "option", value: Cipher.HASHERS }, { name: "Salt", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, ] }, "Derive EVP key": { module: "Ciphers", description: "EVP is a password-based key derivation function (PBKDF) used extensively in OpenSSL. In many applications of cryptography, user security is ultimately dependent on a password, and because a password usually can't be used directly as a cryptographic key, some processing is required.

A salt provides a large set of keys for any given password, and an iteration count increases the cost of producing keys from a password, thereby also increasing the difficulty of attack.

If you leave the salt argument empty, a random salt will be generated.", inputType: "string", outputType: "string", args: [ { name: "Passphrase", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT2 }, { name: "Key size", type: "number", value: Cipher.KDF_KEY_SIZE }, { name: "Iterations", type: "number", value: Cipher.KDF_ITERATIONS }, { name: "Hashing function", type: "option", value: Cipher.HASHERS }, { name: "Salt", type: "toggleString", value: "", toggleValues: Cipher.IO_FORMAT1 }, ] }, "Vigenère Encode": { module: "Ciphers", description: "The Vigenere cipher is a method of encrypting alphabetic text by using a series of different Caesar ciphers based on the letters of a keyword. It is a simple form of polyalphabetic substitution.", highlight: true, highlightReverse: true, inputType: "string", outputType: "string", args: [ { name: "Key", type: "string", value: "" } ] }, "Vigenère Decode": { module: "Ciphers", description: "The Vigenere cipher is a method of encrypting alphabetic text by using a series of different Caesar ciphers based on the letters of a keyword. It is a simple form of polyalphabetic substitution.", highlight: true, highlightReverse: true, inputType: "string", outputType: "string", args: [ { name: "Key", type: "string", value: "" } ] }, "Bifid Cipher Encode": { module: "Ciphers", description: "The Bifid cipher is a cipher which uses a Polybius square in conjunction with transposition, which can be fairly difficult to decipher without knowing the alphabet keyword.", highlight: true, highlightReverse: true, inputType: "string", outputType: "string", args: [ { name: "Keyword", type: "string", value: "" } ] }, "Bifid Cipher Decode": { module: "Ciphers", description: "The Bifid cipher is a cipher which uses a Polybius square in conjunction with transposition, which can be fairly difficult to decipher without knowing the alphabet keyword.", highlight: true, highlightReverse: true, inputType: "string", outputType: "string", args: [ { name: "Keyword", type: "string", value: "" } ] }, "Affine Cipher Encode": { module: "Ciphers", description: "The Affine cipher is a type of monoalphabetic substitution cipher, wherein each letter in an alphabet is mapped to its numeric equivalent, encrypted using simple mathematical function, (ax + b) % 26, and converted back to a letter.", highlight: true, highlightReverse: true, inputType: "string", outputType: "string", args: [ { name: "a", type: "number", value: Cipher.AFFINE_A }, { name: "b", type: "number", value: Cipher.AFFINE_B } ] }, "Affine Cipher Decode": { module: "Ciphers", description: "The Affine cipher is a type of monoalphabetic substitution cipher. To decrypt, each letter in an alphabet is mapped to its numeric equivalent, decrypted by a mathematical function, and converted back to a letter.", highlight: true, highlightReverse: true, inputType: "string", outputType: "string", args: [ { name: "a", type: "number", value: Cipher.AFFINE_A }, { name: "b", type: "number", value: Cipher.AFFINE_B } ] }, "Atbash Cipher": { module: "Ciphers", description: "Atbash is a mono-alphabetic substitution cipher originally used to encode the Hebrew alphabet. It has been modified here for use with the Latin alphabet.", highlight: true, highlightReverse: true, inputType: "string", outputType: "string", args: [] }, "Rotate right": { module: "Default", description: "Rotates each byte to the right by the number of bits specified, optionally carrying the excess bits over to the next byte. Currently only supports 8-bit values.", highlight: true, highlightReverse: true, inputType: "byteArray", outputType: "byteArray", args: [ { name: "Amount", type: "number", value: Rotate.ROTATE_AMOUNT }, { name: "Carry through", type: "boolean", value: Rotate.ROTATE_CARRY } ] }, "Rotate left": { module: "Default", description: "Rotates each byte to the left by the number of bits specified, optionally carrying the excess bits over to the next byte. Currently only supports 8-bit values.", highlight: true, highlightReverse: true, inputType: "byteArray", outputType: "byteArray", args: [ { name: "Amount", type: "number", value: Rotate.ROTATE_AMOUNT }, { name: "Carry through", type: "boolean", value: Rotate.ROTATE_CARRY } ] }, "ROT13": { module: "Default", description: "A simple caesar substitution cipher which rotates alphabet characters by the specified amount (default 13).", highlight: true, highlightReverse: true, inputType: "byteArray", outputType: "byteArray", args: [ { name: "Rotate lower case chars", type: "boolean", value: Rotate.ROT13_LOWERCASE }, { name: "Rotate upper case chars", type: "boolean", value: Rotate.ROT13_UPPERCASE }, { name: "Amount", type: "number", value: Rotate.ROT13_AMOUNT }, ] }, "ROT47": { module: "Default", description: "A slightly more complex variation of a caesar cipher, which includes ASCII characters from 33 '!' to 126 '~'. Default rotation: 47.", highlight: true, highlightReverse: true, inputType: "byteArray", outputType: "byteArray", args: [ { name: "Amount", type: "number", value: Rotate.ROT47_AMOUNT }, ] }, "Strip HTTP headers": { module: "HTTP", description: "Removes HTTP headers from a request or response by looking for the first instance of a double newline.", inputType: "string", outputType: "string", args: [] }, "Parse User Agent": { module: "HTTP", description: "Attempts to identify and categorise information contained in a user-agent string.", inputType: "string", outputType: "string", args: [] }, "Format MAC addresses": { module: "Default", description: "Displays given MAC addresses in multiple different formats.

Expects addresses in a list separated by newlines, spaces or commas.

WARNING: There are no validity checks.", inputType: "string", outputType: "string", args: [ { name: "Output case", type: "option", value: MAC.OUTPUT_CASE }, { name: "No delimiter", type: "boolean", value: MAC.NO_DELIM }, { name: "Dash delimiter", type: "boolean", value: MAC.DASH_DELIM }, { name: "Colon delimiter", type: "boolean", value: MAC.COLON_DELIM }, { name: "Cisco style", type: "boolean", value: MAC.CISCO_STYLE }, { name: "IPv6 interface ID", type: "boolean", value: MAC.IPV6_INTERFACE_ID } ] }, "Encode NetBIOS Name": { module: "Default", description: "NetBIOS names as seen across the client interface to NetBIOS are exactly 16 bytes long. Within the NetBIOS-over-TCP protocols, a longer representation is used.

There are two levels of encoding. The first level maps a NetBIOS name into a domain system name. The second level maps the domain system name into the 'compressed' representation required for interaction with the domain name system.

This operation carries out the first level of encoding. See RFC 1001 for full details.", inputType: "byteArray", outputType: "byteArray", args: [ { name: "Offset", type: "number", value: NetBIOS.OFFSET } ] }, "Decode NetBIOS Name": { module: "Default", description: "NetBIOS names as seen across the client interface to NetBIOS are exactly 16 bytes long. Within the NetBIOS-over-TCP protocols, a longer representation is used.

There are two levels of encoding. The first level maps a NetBIOS name into a domain system name. The second level maps the domain system name into the 'compressed' representation required for interaction with the domain name system.

This operation decodes the first level of encoding. See RFC 1001 for full details.", inputType: "byteArray", outputType: "byteArray", args: [ { name: "Offset", type: "number", value: NetBIOS.OFFSET } ] }, "Offset checker": { module: "Default", description: "Compares multiple inputs (separated by the specified delimiter) and highlights matching characters which appear at the same position in all samples.", inputType: "string", outputType: "html", args: [ { name: "Sample delimiter", type: "binaryString", value: StrUtils.OFF_CHK_SAMPLE_DELIMITER } ] }, "Remove whitespace": { module: "Default", description: "Optionally removes all spaces, carriage returns, line feeds, tabs and form feeds from the input data.

This operation also supports the removal of full stops which are sometimes used to represent non-printable bytes in ASCII output.", inputType: "string", outputType: "string", args: [ { name: "Spaces", type: "boolean", value: Tidy.REMOVE_SPACES }, { name: "Carriage returns (\\r)", type: "boolean", value: Tidy.REMOVE_CARIAGE_RETURNS }, { name: "Line feeds (\\n)", type: "boolean", value: Tidy.REMOVE_LINE_FEEDS }, { name: "Tabs", type: "boolean", value: Tidy.REMOVE_TABS }, { name: "Form feeds (\\f)", type: "boolean", value: Tidy.REMOVE_FORM_FEEDS }, { name: "Full stops", type: "boolean", value: Tidy.REMOVE_FULL_STOPS } ] }, "Remove null bytes": { module: "Default", description: "Removes all null bytes (0x00) from the input.", inputType: "byteArray", outputType: "byteArray", args: [] }, "Drop bytes": { module: "Default", description: "Cuts a slice of the specified number of bytes out of the data.", inputType: "ArrayBuffer", outputType: "ArrayBuffer", args: [ { name: "Start", type: "number", value: Tidy.DROP_START }, { name: "Length", type: "number", value: Tidy.DROP_LENGTH }, { name: "Apply to each line", type: "boolean", value: Tidy.APPLY_TO_EACH_LINE } ] }, "Take bytes": { module: "Default", description: "Takes a slice of the specified number of bytes from the data.", inputType: "ArrayBuffer", outputType: "ArrayBuffer", args: [ { name: "Start", type: "number", value: Tidy.TAKE_START }, { name: "Length", type: "number", value: Tidy.TAKE_LENGTH }, { name: "Apply to each line", type: "boolean", value: Tidy.APPLY_TO_EACH_LINE } ] }, "Pad lines": { module: "Default", description: "Add the specified number of the specified character to the beginning or end of each line", inputType: "string", outputType: "string", args: [ { name: "Position", type: "option", value: Tidy.PAD_POSITION }, { name: "Length", type: "number", value: Tidy.PAD_LENGTH }, { name: "Character", type: "binaryShortString", value: Tidy.PAD_CHAR } ] }, "Reverse": { module: "Default", description: "Reverses the input string.", inputType: "byteArray", outputType: "byteArray", args: [ { name: "By", type: "option", value: SeqUtils.REVERSE_BY } ] }, "Sort": { module: "Default", description: "Alphabetically sorts strings separated by the specified delimiter.

The IP address option supports IPv4 only.", inputType: "string", outputType: "string", args: [ { name: "Delimiter", type: "option", value: SeqUtils.DELIMITER_OPTIONS }, { name: "Reverse", type: "boolean", value: SeqUtils.SORT_REVERSE }, { name: "Order", type: "option", value: SeqUtils.SORT_ORDER } ] }, "Unique": { module: "Default", description: "Removes duplicate strings from the input.", inputType: "string", outputType: "string", args: [ { name: "Delimiter", type: "option", value: SeqUtils.DELIMITER_OPTIONS } ] }, "Count occurrences": { module: "Default", description: "Counts the number of times the provided string occurs in the input.", inputType: "string", outputType: "number", args: [ { name: "Search string", type: "toggleString", value: "", toggleValues: SeqUtils.SEARCH_TYPE } ] }, "Add line numbers": { module: "Default", description: "Adds line numbers to the output.", inputType: "string", outputType: "string", args: [] }, "Remove line numbers": { module: "Default", description: "Removes line numbers from the output if they can be trivially detected.", inputType: "string", outputType: "string", args: [] }, "Find / Replace": { module: "Regex", description: "Replaces all occurrences of the first string with the second.

Includes support for regular expressions (regex), simple strings and extended strings (which support \\n, \\r, \\t, \\b, \\f and escaped hex bytes using \\x notation, e.g. \\x00 for a null byte).", inputType: "string", outputType: "string", args: [ { name: "Find", type: "toggleString", value: "", toggleValues: Regex.SEARCH_TYPE }, { name: "Replace", type: "binaryString", value: "" }, { name: "Global match", type: "boolean", value: Regex.FIND_REPLACE_GLOBAL, }, { name: "Case insensitive", type: "boolean", value: Regex.FIND_REPLACE_CASE, }, { name: "Multiline matching", type: "boolean", value: Regex.FIND_REPLACE_MULTILINE, }, ] }, "To Upper case": { module: "Default", description: "Converts the input string to upper case, optionally limiting scope to only the first character in each word, sentence or paragraph.", highlight: true, highlightReverse: true, inputType: "string", outputType: "string", args: [ { name: "Scope", type: "option", value: StrUtils.CASE_SCOPE } ] }, "To Lower case": { module: "Default", description: "Converts every character in the input to lower case.", highlight: true, highlightReverse: true, inputType: "string", outputType: "string", args: [] }, "Split": { module: "Default", description: "Splits a string into sections around a given delimiter.", inputType: "string", outputType: "string", args: [ { name: "Split delimiter", type: "editableOption", value: StrUtils.SPLIT_DELIM_OPTIONS }, { name: "Join delimiter", type: "editableOption", value: StrUtils.JOIN_DELIM_OPTIONS } ] }, "Filter": { module: "Default", description: "Splits up the input using the specified delimiter and then filters each branch based on a regular expression.", inputType: "string", outputType: "string", args: [ { name: "Delimiter", type: "option", value: StrUtils.DELIMITER_OPTIONS }, { name: "Regex", type: "string", value: "" }, { name: "Invert condition", type: "boolean", value: false }, ] }, "Strings": { module: "Regex", description: "Extracts all strings from the input.", inputType: "string", outputType: "string", args: [ { name: "Encoding", type: "option", value: Extract.ENCODING_LIST }, { name: "Minimum length", type: "number", value: Extract.MIN_STRING_LEN }, { name: "Match", type: "option", value: Extract.STRING_MATCH_TYPE }, { name: "Display total", type: "boolean", value: Extract.DISPLAY_TOTAL } ] }, "Extract IP addresses": { module: "Regex", description: "Extracts all IPv4 and IPv6 addresses.

Warning: Given a string 710.65.0.456, this will match 10.65.0.45 so always check the original input!", inputType: "string", outputType: "string", args: [ { name: "IPv4", type: "boolean", value: Extract.INCLUDE_IPV4 }, { name: "IPv6", type: "boolean", value: Extract.INCLUDE_IPV6 }, { name: "Remove local IPv4 addresses", type: "boolean", value: Extract.REMOVE_LOCAL }, { name: "Display total", type: "boolean", value: Extract.DISPLAY_TOTAL } ] }, "Extract email addresses": { module: "Regex", description: "Extracts all email addresses from the input.", inputType: "string", outputType: "string", args: [ { name: "Display total", type: "boolean", value: Extract.DISPLAY_TOTAL } ] }, "Extract MAC addresses": { module: "Regex", description: "Extracts all Media Access Control (MAC) addresses from the input.", inputType: "string", outputType: "string", args: [ { name: "Display total", type: "boolean", value: Extract.DISPLAY_TOTAL } ] }, "Extract URLs": { module: "Regex", description: "Extracts Uniform Resource Locators (URLs) from the input. The protocol (http, ftp etc.) is required otherwise there will be far too many false positives.", inputType: "string", outputType: "string", args: [ { name: "Display total", type: "boolean", value: Extract.DISPLAY_TOTAL } ] }, "Extract domains": { module: "Regex", description: "Extracts domain names.
Note that this will not include paths. Use Extract URLs to find entire URLs.", inputType: "string", outputType: "string", args: [ { name: "Display total", type: "boolean", value: Extract.DISPLAY_TOTAL } ] }, "Extract file paths": { module: "Regex", description: "Extracts anything that looks like a Windows or UNIX file path.

Note that if UNIX is selected, there will likely be a lot of false positives.", inputType: "string", outputType: "string", args: [ { name: "Windows", type: "boolean", value: Extract.INCLUDE_WIN_PATH }, { name: "UNIX", type: "boolean", value: Extract.INCLUDE_UNIX_PATH }, { name: "Display total", type: "boolean", value: Extract.DISPLAY_TOTAL } ] }, "Extract dates": { module: "Regex", description: "Extracts dates in the following formatsDividers can be any of /, -, . or space", inputType: "string", outputType: "string", args: [ { name: "Display total", type: "boolean", value: Extract.DISPLAY_TOTAL } ] }, "Regular expression": { module: "Regex", description: "Define your own regular expression (regex) to search the input data with, optionally choosing from a list of pre-defined patterns.

Supports extended regex syntax including the 'dot matches all' flag, named capture groups, full unicode coverage (including \\p{} categories and scripts as well as astral codes) and recursive matching.", inputType: "string", outputType: "html", args: [ { name: "Built in regexes", type: "populateOption", value: Regex.REGEX_PRE_POPULATE, target: 1, }, { name: "Regex", type: "text", value: "" }, { name: "Case insensitive", type: "boolean", value: true }, { name: "^ and $ match at newlines", type: "boolean", value: true }, { name: "Dot matches all", type: "boolean", value: false }, { name: "Unicode support", type: "boolean", value: false }, { name: "Astral support", type: "boolean", value: false }, { name: "Display total", type: "boolean", value: Regex.DISPLAY_TOTAL }, { name: "Output format", type: "option", value: Regex.OUTPUT_FORMAT }, ] }, "XPath expression": { module: "Code", description: "Extract information from an XML document with an XPath query", inputType: "string", outputType: "string", args: [ { name: "XPath", type: "string", value: Code.XPATH_INITIAL }, { name: "Result delimiter", type: "binaryShortString", value: Code.XPATH_DELIMITER } ] }, "JPath expression": { module: "Code", description: "Extract information from a JSON object with a JPath query.", inputType: "string", outputType: "string", args: [ { name: "Query", type: "string", value: Code.JPATH_INITIAL }, { name: "Result delimiter", type: "binaryShortString", value: Code.JPATH_DELIMITER } ] }, "CSS selector": { module: "Code", description: "Extract information from an HTML document with a CSS selector", inputType: "string", outputType: "string", args: [ { name: "CSS selector", type: "string", value: Code.CSS_SELECTOR_INITIAL }, { name: "Delimiter", type: "binaryShortString", value: Code.CSS_QUERY_DELIMITER }, ] }, "From UNIX Timestamp": { module: "Default", description: "Converts a UNIX timestamp to a datetime string.

e.g. 978346800 becomes Mon 1 January 2001 11:00:00 UTC

A UNIX timestamp is a 32-bit value representing the number of seconds since January 1, 1970 UTC (the UNIX epoch).", inputType: "number", outputType: "string", args: [ { name: "Units", type: "option", value: DateTime.UNITS } ] }, "To UNIX Timestamp": { module: "Default", description: "Parses a datetime string in UTC and returns the corresponding UNIX timestamp.

e.g. Mon 1 January 2001 11:00:00 becomes 978346800

A UNIX timestamp is a 32-bit value representing the number of seconds since January 1, 1970 UTC (the UNIX epoch).", inputType: "string", outputType: "string", args: [ { name: "Units", type: "option", value: DateTime.UNITS }, { name: "Treat as UTC", type: "boolean", value: DateTime.TREAT_AS_UTC }, { name: "Show parsed datetime", type: "boolean", value: true } ] }, "Sleep": { module: "Default", description: "Sleep causes the recipe to wait for a specified number of milliseconds before continuing execution.", inputType: "ArrayBuffer", outputType: "ArrayBuffer", args: [ { name: "Time (ms)", type: "number", value: 1000 } ] }, "Windows Filetime to UNIX Timestamp": { module: "Default", description: "Converts a Windows Filetime value to a UNIX timestamp.

A Windows Filetime is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601 UTC.

A UNIX timestamp is a 32-bit value representing the number of seconds since January 1, 1970 UTC (the UNIX epoch).

This operation also supports UNIX timestamps in milliseconds, microseconds and nanoseconds.", inputType: "string", outputType: "string", args: [ { name: "Output units", type: "option", value: Filetime.UNITS }, { name: "Input format", type: "option", value: Filetime.FILETIME_FORMATS } ] }, "UNIX Timestamp to Windows Filetime": { module: "Default", description: "Converts a UNIX timestamp to a Windows Filetime value.

A Windows Filetime is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601 UTC.

A UNIX timestamp is a 32-bit value representing the number of seconds since January 1, 1970 UTC (the UNIX epoch).

This operation also supports UNIX timestamps in milliseconds, microseconds and nanoseconds.", inputType: "string", outputType: "string", args: [ { name: "Input units", type: "option", value: Filetime.UNITS }, { name: "Output format", type: "option", value: Filetime.FILETIME_FORMATS } ] }, "Translate DateTime Format": { module: "Default", description: "Parses a datetime string in one format and re-writes it in another.

Run with no input to see the relevant format string examples.", inputType: "string", outputType: "html", args: [ { name: "Built in formats", type: "populateOption", value: DateTime.DATETIME_FORMATS, target: 1 }, { name: "Input format string", type: "binaryString", value: DateTime.INPUT_FORMAT_STRING }, { name: "Input timezone", type: "option", value: DateTime.TIMEZONES }, { name: "Output format string", type: "binaryString", value: DateTime.OUTPUT_FORMAT_STRING }, { name: "Output timezone", type: "option", value: DateTime.TIMEZONES } ] }, "Parse DateTime": { module: "Default", description: "Parses a DateTime string in your specified format and displays it in whichever timezone you choose with the following information:Run with no input to see format string examples if required.", inputType: "string", outputType: "html", args: [ { name: "Built in formats", type: "populateOption", value: DateTime.DATETIME_FORMATS, target: 1 }, { name: "Input format string", type: "binaryString", value: DateTime.INPUT_FORMAT_STRING }, { name: "Input timezone", type: "option", value: DateTime.TIMEZONES }, ] }, "Convert distance": { module: "Default", description: "Converts a unit of distance to another format.", inputType: "BigNumber", outputType: "BigNumber", args: [ { name: "Input units", type: "option", value: Convert.DISTANCE_UNITS }, { name: "Output units", type: "option", value: Convert.DISTANCE_UNITS } ] }, "Convert area": { module: "Default", description: "Converts a unit of area to another format.", inputType: "BigNumber", outputType: "BigNumber", args: [ { name: "Input units", type: "option", value: Convert.AREA_UNITS }, { name: "Output units", type: "option", value: Convert.AREA_UNITS } ] }, "Convert mass": { module: "Default", description: "Converts a unit of mass to another format.", inputType: "BigNumber", outputType: "BigNumber", args: [ { name: "Input units", type: "option", value: Convert.MASS_UNITS }, { name: "Output units", type: "option", value: Convert.MASS_UNITS } ] }, "Convert speed": { module: "Default", description: "Converts a unit of speed to another format.", inputType: "BigNumber", outputType: "BigNumber", args: [ { name: "Input units", type: "option", value: Convert.SPEED_UNITS }, { name: "Output units", type: "option", value: Convert.SPEED_UNITS } ] }, "Convert data units": { module: "Default", description: "Converts a unit of data to another format.", inputType: "BigNumber", outputType: "BigNumber", args: [ { name: "Input units", type: "option", value: Convert.DATA_UNITS }, { name: "Output units", type: "option", value: Convert.DATA_UNITS } ] }, "Raw Deflate": { module: "Compression", description: "Compresses data using the deflate algorithm with no headers.", inputType: "byteArray", outputType: "byteArray", args: [ { name: "Compression type", type: "option", value: Compress.COMPRESSION_TYPE } ] }, "Raw Inflate": { module: "Compression", description: "Decompresses data which has been compressed using the deflate algorithm with no headers.", inputType: "byteArray", outputType: "byteArray", args: [ { name: "Start index", type: "number", value: Compress.INFLATE_INDEX }, { name: "Initial output buffer size", type: "number", value: Compress.INFLATE_BUFFER_SIZE }, { name: "Buffer expansion type", type: "option", value: Compress.INFLATE_BUFFER_TYPE }, { name: "Resize buffer after decompression", type: "boolean", value: Compress.INFLATE_RESIZE }, { name: "Verify result", type: "boolean", value: Compress.INFLATE_VERIFY } ] }, "Zlib Deflate": { module: "Compression", description: "Compresses data using the deflate algorithm adding zlib headers.", inputType: "byteArray", outputType: "byteArray", args: [ { name: "Compression type", type: "option", value: Compress.COMPRESSION_TYPE } ] }, "Zlib Inflate": { module: "Compression", description: "Decompresses data which has been compressed using the deflate algorithm with zlib headers.", inputType: "byteArray", outputType: "byteArray", args: [ { name: "Start index", type: "number", value: Compress.INFLATE_INDEX }, { name: "Initial output buffer size", type: "number", value: Compress.INFLATE_BUFFER_SIZE }, { name: "Buffer expansion type", type: "option", value: Compress.INFLATE_BUFFER_TYPE }, { name: "Resize buffer after decompression", type: "boolean", value: Compress.INFLATE_RESIZE }, { name: "Verify result", type: "boolean", value: Compress.INFLATE_VERIFY } ] }, "Gzip": { module: "Compression", description: "Compresses data using the deflate algorithm with gzip headers.", inputType: "byteArray", outputType: "byteArray", args: [ { name: "Compression type", type: "option", value: Compress.COMPRESSION_TYPE }, { name: "Filename (optional)", type: "string", value: "" }, { name: "Comment (optional)", type: "string", value: "" }, { name: "Include file checksum", type: "boolean", value: Compress.GZIP_CHECKSUM } ] }, "Gunzip": { module: "Compression", description: "Decompresses data which has been compressed using the deflate algorithm with gzip headers.", inputType: "byteArray", outputType: "byteArray", args: [] }, "Zip": { module: "Compression", description: "Compresses data using the PKZIP algorithm with the given filename.

No support for multiple files at this time.", inputType: "byteArray", outputType: "byteArray", args: [ { name: "Filename", type: "string", value: Compress.PKZIP_FILENAME }, { name: "Comment", type: "string", value: "" }, { name: "Password", type: "binaryString", value: "" }, { name: "Compression method", type: "option", value: Compress.COMPRESSION_METHOD }, { name: "Operating system", type: "option", value: Compress.OS }, { name: "Compression type", type: "option", value: Compress.COMPRESSION_TYPE } ] }, "Unzip": { module: "Compression", description: "Decompresses data using the PKZIP algorithm and displays it per file, with support for passwords.", inputType: "byteArray", outputType: "html", args: [ { name: "Password", type: "binaryString", value: "" }, { name: "Verify result", type: "boolean", value: Compress.PKUNZIP_VERIFY } ] }, "Bzip2 Decompress": { module: "Compression", description: "Decompresses data using the Bzip2 algorithm.", inputType: "byteArray", outputType: "string", args: [] }, "Generic Code Beautify": { module: "Code", description: "Attempts to pretty print C-style languages such as C, C++, C#, Java, PHP, JavaScript etc.

This will not do a perfect job, and the resulting code may not work any more. This operation is designed purely to make obfuscated or minified code more easy to read and understand.

Things which will not work properly:", inputType: "string", outputType: "string", args: [] }, "JavaScript Parser": { module: "Code", description: "Returns an Abstract Syntax Tree for valid JavaScript code.", inputType: "string", outputType: "string", args: [ { name: "Location info", type: "boolean", value: JS.PARSE_LOC }, { name: "Range info", type: "boolean", value: JS.PARSE_RANGE }, { name: "Include tokens array", type: "boolean", value: JS.PARSE_TOKENS }, { name: "Include comments array", type: "boolean", value: JS.PARSE_COMMENT }, { name: "Report errors and try to continue", type: "boolean", value: JS.PARSE_TOLERANT }, ] }, "JavaScript Beautify": { module: "Code", description: "Parses and pretty prints valid JavaScript code. Also works with JavaScript Object Notation (JSON).", inputType: "string", outputType: "string", args: [ { name: "Indent string", type: "binaryShortString", value: JS.BEAUTIFY_INDENT }, { name: "Quotes", type: "option", value: JS.BEAUTIFY_QUOTES }, { name: "Semicolons before closing braces", type: "boolean", value: JS.BEAUTIFY_SEMICOLONS }, { name: "Include comments", type: "boolean", value: JS.BEAUTIFY_COMMENT }, ] }, "JavaScript Minify": { module: "Code", description: "Compresses JavaScript code.", inputType: "string", outputType: "string", args: [] }, "XML Beautify": { module: "Code", description: "Indents and prettifies eXtensible Markup Language (XML) code.", inputType: "string", outputType: "string", args: [ { name: "Indent string", type: "binaryShortString", value: Code.BEAUTIFY_INDENT } ] }, "JSON Beautify": { module: "Code", description: "Indents and prettifies JavaScript Object Notation (JSON) code.", inputType: "string", outputType: "string", args: [ { name: "Indent string", type: "binaryShortString", value: Code.BEAUTIFY_INDENT } ] }, "CSS Beautify": { module: "Code", description: "Indents and prettifies Cascading Style Sheets (CSS) code.", inputType: "string", outputType: "string", args: [ { name: "Indent string", type: "binaryShortString", value: Code.BEAUTIFY_INDENT } ] }, "SQL Beautify": { module: "Code", description: "Indents and prettifies Structured Query Language (SQL) code.", inputType: "string", outputType: "string", args: [ { name: "Indent string", type: "binaryShortString", value: Code.BEAUTIFY_INDENT } ] }, "XML Minify": { module: "Code", description: "Compresses eXtensible Markup Language (XML) code.", inputType: "string", outputType: "string", args: [ { name: "Preserve comments", type: "boolean", value: Code.PRESERVE_COMMENTS } ] }, "JSON Minify": { module: "Code", description: "Compresses JavaScript Object Notation (JSON) code.", inputType: "string", outputType: "string", args: [] }, "CSS Minify": { module: "Code", description: "Compresses Cascading Style Sheets (CSS) code.", inputType: "string", outputType: "string", args: [ { name: "Preserve comments", type: "boolean", value: Code.PRESERVE_COMMENTS } ] }, "SQL Minify": { module: "Code", description: "Compresses Structured Query Language (SQL) code.", inputType: "string", outputType: "string", args: [] }, "Analyse hash": { module: "Hashing", description: "Tries to determine information about a given hash and suggests which algorithm may have been used to generate it based on its length.", inputType: "string", outputType: "string", args: [] }, "MD2": { module: "Hashing", description: "The MD2 (Message-Digest 2) algorithm is a cryptographic hash function developed by Ronald Rivest in 1989. The algorithm is optimized for 8-bit computers.

Although MD2 is no longer considered secure, even as of 2014, it remains in use in public key infrastructures as part of certificates generated with MD2 and RSA.", inputType: "ArrayBuffer", outputType: "string", args: [] }, "MD4": { module: "Hashing", description: "The MD4 (Message-Digest 4) algorithm is a cryptographic hash function developed by Ronald Rivest in 1990. The digest length is 128 bits. The algorithm has influenced later designs, such as the MD5, SHA-1 and RIPEMD algorithms.

The security of MD4 has been severely compromised.", inputType: "ArrayBuffer", outputType: "string", args: [] }, "MD5": { module: "Hashing", description: "MD5 (Message-Digest 5) is a widely used hash function. It has been used in a variety of security applications and is also commonly used to check the integrity of files.

However, MD5 is not collision resistant and it isn't suitable for applications like SSL/TLS certificates or digital signatures that rely on this property.", inputType: "ArrayBuffer", outputType: "string", args: [] }, "MD6": { module: "Hashing", description: "The MD6 (Message-Digest 6) algorithm is a cryptographic hash function. It uses a Merkle tree-like structure to allow for immense parallel computation of hashes for very long inputs.", inputType: "string", outputType: "string", args: [ { name: "Size", type: "number", value: Hash.MD6_SIZE }, { name: "Levels", type: "number", value: Hash.MD6_LEVELS }, { name: "Key", type: "string", value: "" } ] }, "SHA0": { module: "Hashing", description: "SHA-0 is a retronym applied to the original version of the 160-bit hash function published in 1993 under the name 'SHA'. It was withdrawn shortly after publication due to an undisclosed 'significant flaw' and replaced by the slightly revised version SHA-1.", inputType: "ArrayBuffer", outputType: "string", args: [] }, "SHA1": { module: "Hashing", description: "The SHA (Secure Hash Algorithm) hash functions were designed by the NSA. SHA-1 is the most established of the existing SHA hash functions and it is used in a variety of security applications and protocols.

However, SHA-1's collision resistance has been weakening as new attacks are discovered or improved.", inputType: "ArrayBuffer", outputType: "string", args: [] }, "SHA2": { module: "Hashing", description: "The SHA-2 (Secure Hash Algorithm 2) hash functions were designed by the NSA. SHA-2 includes significant changes from its predecessor, SHA-1. The SHA-2 family consists of hash functions with digests (hash values) that are 224, 256, 384 or 512 bits: SHA224, SHA256, SHA384, SHA512.

", inputType: "ArrayBuffer", outputType: "string", args: [ { name: "Size", type: "option", value: Hash.SHA2_SIZE } ] }, "SHA3": { module: "Hashing", description: "The SHA-3 (Secure Hash Algorithm 3) hash functions were released by NIST on August 5, 2015. Although part of the same series of standards, SHA-3 is internally quite different from the MD5-like structure of SHA-1 and SHA-2.

SHA-3 is a subset of the broader cryptographic primitive family Keccak designed by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche, building upon RadioGatún.", inputType: "ArrayBuffer", outputType: "string", args: [ { name: "Size", type: "option", value: Hash.SHA3_SIZE } ] }, "Keccak": { module: "Hashing", description: "The Keccak hash algorithm was designed by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche, building upon RadioGatún. It was selected as the winner of the SHA-3 design competition.

This version of the algorithm is Keccak[c=2d] and differs from the SHA-3 specification.", inputType: "ArrayBuffer", outputType: "string", args: [ { name: "Size", type: "option", value: Hash.KECCAK_SIZE } ] }, "Shake": { module: "Hashing", description: "Shake is an Extendable Output Function (XOF) of the SHA-3 hash algorithm, part of the Keccak family, allowing for variable output length/size.", inputType: "ArrayBuffer", outputType: "string", args: [ { name: "Capacity", type: "option", value: Hash.SHAKE_CAPACITY }, { name: "Size", type: "number", value: Hash.SHAKE_SIZE } ] }, "RIPEMD": { module: "Hashing", description: "RIPEMD (RACE Integrity Primitives Evaluation Message Digest) is a family of cryptographic hash functions developed in Leuven, Belgium, by Hans Dobbertin, Antoon Bosselaers and Bart Preneel at the COSIC research group at the Katholieke Universiteit Leuven, and first published in 1996.

RIPEMD was based upon the design principles used in MD4, and is similar in performance to the more popular SHA-1.

", inputType: "ArrayBuffer", outputType: "string", args: [ { name: "Size", type: "option", value: Hash.RIPEMD_SIZE } ] }, "HAS-160": { module: "Hashing", description: "HAS-160 is a cryptographic hash function designed for use with the Korean KCDSA digital signature algorithm. It is derived from SHA-1, with assorted changes intended to increase its security. It produces a 160-bit output.

HAS-160 is used in the same way as SHA-1. First it divides input in blocks of 512 bits each and pads the final block. A digest function updates the intermediate hash value by processing the input blocks in turn.

The message digest algorithm consists of 80 rounds.", inputType: "ArrayBuffer", outputType: "string", args: [] }, "Whirlpool": { module: "Hashing", description: "Whirlpool is a cryptographic hash function designed by Vincent Rijmen (co-creator of AES) and Paulo S. L. M. Barreto, who first described it in 2000.

Several variants exist:", inputType: "ArrayBuffer", outputType: "string", args: [ { name: "Variant", type: "option", value: Hash.WHIRLPOOL_VARIANT } ] }, "Snefru": { module: "Hashing", description: "Snefru is a cryptographic hash function invented by Ralph Merkle in 1990 while working at Xerox PARC. The function supports 128-bit and 256-bit output. It was named after the Egyptian Pharaoh Sneferu, continuing the tradition of the Khufu and Khafre block ciphers.

The original design of Snefru was shown to be insecure by Eli Biham and Adi Shamir who were able to use differential cryptanalysis to find hash collisions. The design was then modified by increasing the number of iterations of the main pass of the algorithm from two to eight.", inputType: "ArrayBuffer", outputType: "string", args: [ { name: "Rounds", type: "option", value: Hash.SNEFRU_ROUNDS }, { name: "Size", type: "option", value: Hash.SNEFRU_SIZE } ] }, "SSDEEP": { module: "Hashing", description: "SSDEEP is a program for computing context triggered piecewise hashes (CTPH). Also called fuzzy hashes, CTPH can match inputs that have homologies. Such inputs have sequences of identical bytes in the same order, although bytes in between these sequences may be different in both content and length.

SSDEEP hashes are now widely used for simple identification purposes (e.g. the 'Basic Properties' section in VirusTotal). Although 'better' fuzzy hashes are available, SSDEEP is still one of the primary choices because of its speed and being a de facto standard.

This operation is fundamentally the same as the CTPH operation, however their outputs differ in format.", inputType: "string", outputType: "string", args: [] }, "CTPH": { module: "Hashing", description: "Context Triggered Piecewise Hashing, also called Fuzzy Hashing, can match inputs that have homologies. Such inputs have sequences of identical bytes in the same order, although bytes in between these sequences may be different in both content and length.

CTPH was originally based on the work of Dr. Andrew Tridgell and a spam email detector called SpamSum. This method was adapted by Jesse Kornblum and published at the DFRWS conference in 2006 in a paper 'Identifying Almost Identical Files Using Context Triggered Piecewise Hashing'.", inputType: "string", outputType: "string", args: [] }, "Compare SSDEEP hashes": { module: "Hashing", description: "Compares two SSDEEP fuzzy hashes to determine the similarity between them on a scale of 0 to 100.", inputType: "string", outputType: "Number", args: [ { name: "Delimiter", type: "option", value: Hash.DELIM_OPTIONS } ] }, "Compare CTPH hashes": { module: "Hashing", description: "Compares two Context Triggered Piecewise Hashing (CTPH) fuzzy hashes to determine the similarity between them on a scale of 0 to 100.", inputType: "string", outputType: "Number", args: [ { name: "Delimiter", type: "option", value: Hash.DELIM_OPTIONS } ] }, "HMAC": { module: "Hashing", description: "Keyed-Hash Message Authentication Codes (HMAC) are a mechanism for message authentication using cryptographic hash functions.", inputType: "ArrayBuffer", outputType: "string", args: [ { name: "Key", type: "binaryString", value: "" }, { name: "Hashing function", type: "option", value: Hash.HMAC_FUNCTIONS }, ] }, "Fletcher-8 Checksum": { module: "Hashing", description: "The Fletcher checksum is an algorithm for computing a position-dependent checksum devised by John Gould Fletcher at Lawrence Livermore Labs in the late 1970s.

The objective of the Fletcher checksum was to provide error-detection properties approaching those of a cyclic redundancy check but with the lower computational effort associated with summation techniques.", inputType: "byteArray", outputType: "string", args: [] }, "Fletcher-16 Checksum": { module: "Hashing", description: "The Fletcher checksum is an algorithm for computing a position-dependent checksum devised by John Gould Fletcher at Lawrence Livermore Labs in the late 1970s.

The objective of the Fletcher checksum was to provide error-detection properties approaching those of a cyclic redundancy check but with the lower computational effort associated with summation techniques.", inputType: "byteArray", outputType: "string", args: [] }, "Fletcher-32 Checksum": { module: "Hashing", description: "The Fletcher checksum is an algorithm for computing a position-dependent checksum devised by John Gould Fletcher at Lawrence Livermore Labs in the late 1970s.

The objective of the Fletcher checksum was to provide error-detection properties approaching those of a cyclic redundancy check but with the lower computational effort associated with summation techniques.", inputType: "byteArray", outputType: "string", args: [] }, "Fletcher-64 Checksum": { module: "Hashing", description: "The Fletcher checksum is an algorithm for computing a position-dependent checksum devised by John Gould Fletcher at Lawrence Livermore Labs in the late 1970s.

The objective of the Fletcher checksum was to provide error-detection properties approaching those of a cyclic redundancy check but with the lower computational effort associated with summation techniques.", inputType: "byteArray", outputType: "string", args: [] }, "Adler-32 Checksum": { module: "Hashing", description: "Adler-32 is a checksum algorithm which was invented by Mark Adler in 1995, and is a modification of the Fletcher checksum. Compared to a cyclic redundancy check of the same length, it trades reliability for speed (preferring the latter).

Adler-32 is more reliable than Fletcher-16, and slightly less reliable than Fletcher-32.", inputType: "byteArray", outputType: "string", args: [] }, "CRC-32 Checksum": { module: "Hashing", description: "A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to raw data.

The CRC was invented by W. Wesley Peterson in 1961; the 32-bit CRC function of Ethernet and many other standards is the work of several researchers and was published in 1975.", inputType: "string", outputType: "string", args: [] }, "CRC-16 Checksum": { module: "Hashing", description: "A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to raw data.

The CRC was invented by W. Wesley Peterson in 1961.", inputType: "string", outputType: "string", args: [] }, "Generate all hashes": { module: "Hashing", description: "Generates all available hashes and checksums for the input.", inputType: "ArrayBuffer", outputType: "string", args: [] }, "Entropy": { module: "Default", description: "Calculates the Shannon entropy of the input data which gives an idea of its randomness. 8 is the maximum.", inputType: "byteArray", outputType: "html", args: [ { name: "Chunk size", type: "number", value: Entropy.CHUNK_SIZE } ] }, "Frequency distribution": { module: "Default", description: "Displays the distribution of bytes in the data as a graph.", inputType: "ArrayBuffer", outputType: "html", args: [ { name: "Show 0%'s", type: "boolean", value: Entropy.FREQ_ZEROS } ] }, "Chi Square": { module: "Default", description: "Calculates the Chi Square distribution of values.", inputType: "ArrayBuffer", outputType: "number", args: [] }, "Numberwang": { module: "Default", description: "Based on the popular gameshow by Mitchell and Webb.", inputType: "string", outputType: "string", args: [] }, "Parse X.509 certificate": { module: "PublicKey", description: "X.509 is an ITU-T standard for a public key infrastructure (PKI) and Privilege Management Infrastructure (PMI). It is commonly involved with SSL/TLS security.

This operation displays the contents of a certificate in a human readable format, similar to the openssl command line tool.", inputType: "string", outputType: "string", args: [ { name: "Input format", type: "option", value: PublicKey.X509_INPUT_FORMAT } ] }, "PEM to Hex": { module: "PublicKey", description: "Converts PEM (Privacy Enhanced Mail) format to a hexadecimal DER (Distinguished Encoding Rules) string.", inputType: "string", outputType: "string", args: [] }, "Hex to PEM": { module: "PublicKey", description: "Converts a hexadecimal DER (Distinguished Encoding Rules) string into PEM (Privacy Enhanced Mail) format.", inputType: "string", outputType: "string", args: [ { name: "Header string", type: "string", value: PublicKey.PEM_HEADER_STRING } ] }, "Hex to Object Identifier": { module: "PublicKey", description: "Converts a hexadecimal string into an object identifier (OID).", inputType: "string", outputType: "string", args: [] }, "Object Identifier to Hex": { module: "PublicKey", description: "Converts an object identifier (OID) into a hexadecimal string.", inputType: "string", outputType: "string", args: [] }, "Parse ASN.1 hex string": { module: "PublicKey", description: "Abstract Syntax Notation One (ASN.1) is a standard and notation that describes rules and structures for representing, encoding, transmitting, and decoding data in telecommunications and computer networking.

This operation parses arbitrary ASN.1 data and presents the resulting tree.", inputType: "string", outputType: "string", args: [ { name: "Starting index", type: "number", value: 0 }, { name: "Truncate octet strings longer than", type: "number", value: PublicKey.ASN1_TRUNCATE_LENGTH } ] }, "Detect File Type": { module: "Default", description: "Attempts to guess the MIME (Multipurpose Internet Mail Extensions) type of the data based on 'magic bytes'.

Currently supports the following file types: 7z, amr, avi, bmp, bz2, class, cr2, crx, dex, dmg, doc, elf, eot, epub, exe, flac, flv, gif, gz, ico, iso, jpg, jxr, m4a, m4v, mid, mkv, mov, mp3, mp4, mpg, ogg, otf, pdf, png, ppt, ps, psd, rar, rtf, sqlite, swf, tar, tar.z, tif, ttf, utf8, vmdk, wav, webm, webp, wmv, woff, woff2, xls, xz, zip.", inputType: "ArrayBuffer", outputType: "string", args: [] }, "Scan for Embedded Files": { module: "Default", description: "Scans the data for potential embedded files by looking for magic bytes at all offsets. This operation is prone to false positives.

WARNING: Files over about 100KB in size will take a VERY long time to process.", inputType: "ArrayBuffer", outputType: "string", args: [ { name: "Ignore common byte sequences", type: "boolean", value: FileType.IGNORE_COMMON_BYTE_SEQUENCES } ] }, "Expand alphabet range": { module: "Default", description: "Expand an alphabet range string into a list of the characters in that range.

e.g. a-z becomes abcdefghijklmnopqrstuvwxyz.", inputType: "string", outputType: "string", args: [ { name: "Delimiter", type: "binaryString", value: "" } ] }, "Diff": { module: "Diff", description: "Compares two inputs (separated by the specified delimiter) and highlights the differences between them.", inputType: "string", outputType: "html", args: [ { name: "Sample delimiter", type: "binaryString", value: Diff.DIFF_SAMPLE_DELIMITER }, { name: "Diff by", type: "option", value: Diff.DIFF_BY }, { name: "Show added", type: "boolean", value: true }, { name: "Show removed", type: "boolean", value: true }, { name: "Ignore whitespace (relevant for word and line)", type: "boolean", value: false } ] }, "Parse UNIX file permissions": { module: "Default", description: "Given a UNIX/Linux file permission string in octal or textual format, this operation explains which permissions are granted to which user groups.

Input should be in either octal (e.g. 755) or textual (e.g. drwxr-xr-x) format.", inputType: "string", outputType: "string", args: [] }, "Swap endianness": { module: "Default", description: "Switches the data from big-endian to little-endian or vice-versa. Data can be read in as hexadecimal or raw bytes. It will be returned in the same format as it is entered.", highlight: true, highlightReverse: true, inputType: "string", outputType: "string", args: [ { name: "Data format", type: "option", value: Endian.DATA_FORMAT }, { name: "Word length (bytes)", type: "number", value: Endian.WORD_LENGTH }, { name: "Pad incomplete words", type: "boolean", value: Endian.PAD_INCOMPLETE_WORDS } ] }, "Microsoft Script Decoder": { module: "Default", description: "Decodes Microsoft Encoded Script files that have been encoded with Microsoft's custom encoding. These are often VBS (Visual Basic Script) files that are encoded and renamed with a '.vbe' extention or JS (JScript) files renamed with a '.jse' extention.

Sample

Encoded:
#@~^RQAAAA==-mD~sX|:/TP{~J:+dYbxL~@!F@*@!+@*@!&@*eEI@#@&@#@&.jm.raY 214Wv:zms/obI0xEAAA==^#~@

Decoded:
var my_msg = "Testing <1><2><3>!";\n\nVScript.Echo(my_msg);", inputType: "string", outputType: "string", args: [] }, "Syntax highlighter": { module: "Code", description: "Adds syntax highlighting to a range of source code languages. Note that this will not indent the code. Use one of the 'Beautify' operations for that.", highlight: true, highlightReverse: true, inputType: "string", outputType: "html", args: [ { name: "Language", type: "option", value: Code.LANGUAGES }, ] }, "TCP/IP Checksum": { module: "Hashing", description: "Calculates the checksum for a TCP (Transport Control Protocol) or IP (Internet Protocol) header from an input of raw bytes.", inputType: "byteArray", outputType: "string", args: [] }, "Parse colour code": { module: "Default", description: "Converts a colour code in a standard format to other standard formats and displays the colour itself.

Example inputs", inputType: "string", outputType: "html", args: [] }, "Generate UUID": { module: "Default", description: "Generates an RFC 4122 version 4 compliant Universally Unique Identifier (UUID), also known as a Globally Unique Identifier (GUID).

A version 4 UUID relies on random numbers, in this case generated using window.crypto if available and falling back to Math.random if not.", inputType: "string", outputType: "string", args: [] }, "Substitute": { module: "Ciphers", description: "A substitution cipher allowing you to specify bytes to replace with other byte values. This can be used to create Caesar ciphers but is more powerful as any byte value can be substituted, not just letters, and the substitution values need not be in order.

Enter the bytes you want to replace in the Plaintext field and the bytes to replace them with in the Ciphertext field.

Non-printable bytes can be specified using string escape notation. For example, a line feed character can be written as either \\n or \\x0a.

Byte ranges can be specified using a hyphen. For example, the sequence 0123456789 can be written as 0-9.", inputType: "string", outputType: "string", args: [ { name: "Plaintext", type: "binaryString", value: Cipher.SUBS_PLAINTEXT }, { name: "Ciphertext", type: "binaryString", value: Cipher.SUBS_CIPHERTEXT } ] }, "Escape string": { module: "Default", description: "Escapes special characters in a string so that they do not cause conflicts. For example, Don't stop me now becomes Don\\'t stop me now.

Supports the following escape sequences:", inputType: "string", outputType: "string", args: [ { name: "Escape level", type: "option", value: StrUtils.ESCAPE_LEVEL }, { name: "Escape quote", type: "option", value: StrUtils.QUOTE_TYPES }, { name: "JSON compatible", type: "boolean", value: false }, { name: "ES6 compatible", type: "boolean", value: true }, { name: "Uppercase hex", type: "boolean", value: false } ] }, "Unescape string": { module: "Default", description: "Unescapes characters in a string that have been escaped. For example, Don\\'t stop me now becomes Don't stop me now.

Supports the following escape sequences:", inputType: "string", outputType: "string", args: [] }, "To Morse Code": { module: "Default", description: "Translates alphanumeric characters into International Morse Code.

Ignores non-Morse characters.

e.g. SOS becomes ... --- ...", inputType: "string", outputType: "string", args: [ { name: "Format options", type: "option", value: MorseCode.FORMAT_OPTIONS }, { name: "Letter delimiter", type: "option", value: MorseCode.LETTER_DELIM_OPTIONS }, { name: "Word delimiter", type: "option", value: MorseCode.WORD_DELIM_OPTIONS } ] }, "From Morse Code": { module: "Default", description: "Translates Morse Code into (upper case) alphanumeric characters.", inputType: "string", outputType: "string", args: [ { name: "Letter delimiter", type: "option", value: MorseCode.LETTER_DELIM_OPTIONS }, { name: "Word delimiter", type: "option", value: MorseCode.WORD_DELIM_OPTIONS } ] }, "Tar": { module: "Compression", description: "Packs the input into a tarball.

No support for multiple files at this time.", inputType: "byteArray", outputType: "byteArray", args: [ { name: "Filename", type: "string", value: Compress.TAR_FILENAME } ] }, "Untar": { module: "Compression", description: "Unpacks a tarball and displays it per file.", inputType: "byteArray", outputType: "html", args: [ ] }, "Head": { module: "Default", description: [ "Like the UNIX head utility.", "
", "Gets the first n lines.", "
", "You can select all but the last n lines by entering a negative value for n.", "
", "The delimiter can be changed so that instead of lines, fields (i.e. commas) are selected instead.", ].join("\n"), inputType: "string", outputType: "string", args: [ { name: "Delimiter", type: "option", value: StrUtils.DELIMITER_OPTIONS }, { name: "Number", type: "number", value: 10, }, ] }, "Tail": { module: "Default", description: [ "Like the UNIX tail utility.", "
", "Gets the last n lines.", "
", "Optionally you can select all lines after line n by entering a negative value for n.", "
", "The delimiter can be changed so that instead of lines, fields (i.e. commas) are selected instead.", ].join("\n"), inputType: "string", outputType: "string", args: [ { name: "Delimiter", type: "option", value: StrUtils.DELIMITER_OPTIONS }, { name: "Number", type: "number", value: 10, }, ] }, "To Snake case": { module: "Code", description: [ "Converts the input string to snake case.", "

", "Snake case is all lower case with underscores as word boundaries.", "

", "e.g. this_is_snake_case", "

", "'Attempt to be context aware' will make the operation attempt to nicely transform variable and function names.", ].join("\n"), inputType: "string", outputType: "string", args: [ { name: "Attempt to be context aware", type: "boolean", value: false, }, ] }, "To Camel case": { module: "Code", description: [ "Converts the input string to camel case.", "

", "Camel case is all lower case except letters after word boundaries which are uppercase.", "

", "e.g. thisIsCamelCase", "

", "'Attempt to be context aware' will make the operation attempt to nicely transform variable and function names.", ].join("\n"), inputType: "string", outputType: "string", args: [ { name: "Attempt to be context aware", type: "boolean", value: false, }, ] }, "To Kebab case": { module: "Code", description: [ "Converts the input string to kebab case.", "

", "Kebab case is all lower case with dashes as word boundaries.", "

", "e.g. this-is-kebab-case", "

", "'Attempt to be context aware' will make the operation attempt to nicely transform variable and function names.", ].join("\n"), inputType: "string", outputType: "string", args: [ { name: "Attempt to be context aware", type: "boolean", value: false, }, ] }, "Extract EXIF": { module: "Image", description: [ "Extracts EXIF data from an image.", "

", "EXIF data is metadata embedded in images (JPEG, JPG, TIFF) and audio files.", "

", "EXIF data from photos usually contains information about the image file itself as well as the device used to create it.", ].join("\n"), inputType: "ArrayBuffer", outputType: "string", args: [], }, "Render Image": { module: "Image", description: "Displays the input as an image. Supports the following formats:

", inputType: "string", outputType: "html", args: [ { name: "Input format", type: "option", value: Image.INPUT_FORMAT } ] }, "Remove EXIF": { module: "Image", description: [ "Removes EXIF data from a JPEG image.", "

", "EXIF data embedded in photos usually contains information about the image file itself as well as the device used to create it.", ].join("\n"), inputType: "byteArray", outputType: "byteArray", args: [] }, "HTTP request": { module: "HTTP", description: [ "Makes an HTTP request and returns the response.", "

", "This operation supports different HTTP verbs like GET, POST, PUT, etc.", "

", "You can add headers line by line in the format Key: Value", "

", "The status code of the response, along with a limited selection of exposed headers, can be viewed by checking the 'Show response metadata' option. Only a limited set of response headers are exposed by the browser for security reasons.", ].join("\n"), inputType: "string", outputType: "string", manualBake: true, args: [ { name: "Method", type: "option", value: HTTP.METHODS, }, { name: "URL", type: "string", value: "", }, { name: "Headers", type: "text", value: "", }, { name: "Mode", type: "option", value: HTTP.MODE, }, { name: "Show response metadata", type: "boolean", value: false, } ] }, "From BCD": { module: "Default", description: "Binary-Coded Decimal (BCD) is a class of binary encodings of decimal numbers where each decimal digit is represented by a fixed number of bits, usually four or eight. Special bit patterns are sometimes used for a sign.", inputType: "string", outputType: "BigNumber", args: [ { name: "Scheme", type: "option", value: BCD.ENCODING_SCHEME }, { name: "Packed", type: "boolean", value: true }, { name: "Signed", type: "boolean", value: false }, { name: "Input format", type: "option", value: BCD.FORMAT } ] }, "To BCD": { module: "Default", description: "Binary-Coded Decimal (BCD) is a class of binary encodings of decimal numbers where each decimal digit is represented by a fixed number of bits, usually four or eight. Special bit patterns are sometimes used for a sign", inputType: "BigNumber", outputType: "string", args: [ { name: "Scheme", type: "option", value: BCD.ENCODING_SCHEME }, { name: "Packed", type: "boolean", value: true }, { name: "Signed", type: "boolean", value: false }, { name: "Output format", type: "option", value: BCD.FORMAT } ] }, "Bit shift left": { module: "Default", description: "Shifts the bits in each byte towards the left by the specified amount.", inputType: "byteArray", outputType: "byteArray", highlight: true, highlightReverse: true, args: [ { name: "Amount", type: "number", value: 1 }, ] }, "Bit shift right": { module: "Default", description: "Shifts the bits in each byte towards the right by the specified amount.

Logical shifts replace the leftmost bits with zeros.
Arithmetic shifts preserve the most significant bit (MSB) of the original byte keeping the sign the same (positive or negative).", inputType: "byteArray", outputType: "byteArray", highlight: true, highlightReverse: true, args: [ { name: "Amount", type: "number", value: 1 }, { name: "Type", type: "option", value: BitwiseOp.BIT_SHIFT_TYPE } ] }, "Generate TOTP": { module: "Default", description: "The Time-based One-Time Password algorithm (TOTP) is an algorithm that computes a one-time password from a shared secret key and the current time. It has been adopted as Internet Engineering Task Force standard RFC 6238, is the cornerstone of Initiative For Open Authentication (OATH), and is used in a number of two-factor authentication systems. A TOTP is an HOTP where the counter is the current time.

Enter the secret as the input or leave it blank for a random secret to be generated. T0 and T1 are in seconds.", inputType: "byteArray", outputType: "string", args: [ { name: "Name", type: "string", value: "" }, { name: "Key size", type: "number", value: 32 }, { name: "Code length", type: "number", value: 6 }, { name: "Epoch offset (T0)", type: "number", value: 0 }, { name: "Interval (T1)", type: "number", value: 30 } ] }, "Generate HOTP": { module: "Default", description: "The HMAC-based One-Time Password algorithm (HOTP) is an algorithm that computes a one-time password from a shared secret key and an incrementing counter. It has been adopted as Internet Engineering Task Force standard RFC 4226, is the cornerstone of Initiative For Open Authentication (OATH), and is used in a number of two-factor authentication systems.

Enter the secret as the input or leave it blank for a random secret to be generated.", inputType: "byteArray", outputType: "string", args: [ { name: "Name", type: "string", value: "" }, { name: "Key size", type: "number", value: 32 }, { name: "Code length", type: "number", value: 6 }, { name: "Counter", type: "number", value: 0 } ] }, "PHP Deserialize": { module: "Default", description: "Deserializes PHP serialized data, outputting keyed arrays as JSON.

This function does not support object tags.

Example:
a:2:{s:1:"a";i:10;i:0;a:1:{s:2:"ab";b:1;}}
becomes
{"a": 10,0: {"ab": true}}

Output valid JSON: JSON doesn't support integers as keys, whereas PHP serialization does. Enabling this will cast these integers to strings. This will also escape backslashes.", inputType: "string", outputType: "string", args: [ { name: "Output valid JSON", type: "boolean", value: PHP.OUTPUT_VALID_JSON } ] }, "Hamming Distance": { module: "Default", description: "In information theory, the Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or the minimum number of errors that could have transformed one string into the other. In a more general context, the Hamming distance is one of several string metrics for measuring the edit distance between two sequences.", inputType: "string", outputType: "string", args: [ { name: "Delimiter", type: "binaryShortString", value: StrUtils.HAMMING_DELIM }, { name: "Unit", type: "option", value: StrUtils.HAMMING_UNIT }, { name: "Input type", type: "option", value: StrUtils.HAMMING_INPUT_TYPE } ] }, "XKCD Random Number": { module: "Default", description: "RFC 1149.5 specifies 4 as the standard IEEE-vetted random number.

XKCD #221", inputType: "string", outputType: "number", args: [] }, "Bcrypt": { module: "Hashing", description: "bcrypt is a password hashing function designed by Niels Provos and David Mazières, based on the Blowfish cipher, and presented at USENIX in 1999. Besides incorporating a salt to protect against rainbow table attacks, bcrypt is an adaptive function: over time, the iteration count (rounds) can be increased to make it slower, so it remains resistant to brute-force search attacks even with increasing computation power.

Enter the password in the input to generate its hash.", inputType: "string", outputType: "string", args: [ { name: "Rounds", type: "number", value: Hash.BCRYPT_ROUNDS } ] }, "Bcrypt compare": { module: "Hashing", description: "Tests whether the input matches the given bcrypt hash. To test multiple possible passwords, use the 'Fork' operation.", inputType: "string", outputType: "string", args: [ { name: "Hash", type: "string", value: "" } ] }, "Bcrypt parse": { module: "Hashing", description: "Parses a bcrypt hash to determine the number of rounds used, the salt, and the password hash.", inputType: "string", outputType: "string", args: [] }, "Scrypt": { module: "Hashing", description: "scrypt is a password-based key derivation function (PBKDF) created by Colin Percival. The algorithm was specifically designed to make it costly to perform large-scale custom hardware attacks by requiring large amounts of memory. In 2016, the scrypt algorithm was published by IETF as RFC 7914.

Enter the password in the input to generate its hash.", inputType: "string", outputType: "string", args: [ { name: "Salt", type: "toggleString", value: "", toggleValues: Hash.KEY_FORMAT }, { name: "Iterations (N)", type: "number", value: Hash.SCRYPT_ITERATIONS }, { name: "Memory factor (r)", type: "number", value: Hash.SCRYPT_MEM_FACTOR }, { name: "Parallelization factor (p)", type: "number", value: Hash.SCRYPT_PARALLEL_FACTOR }, { name: "Key length", type: "number", value: Hash.SCRYPT_KEY_LENGTH }, ] }, "BSON serialise": { module: "BSON", description: "BSON is a computer data interchange format used mainly as a data storage and network transfer format in the MongoDB database. It is a binary form for representing simple data structures, associative arrays (called objects or documents in MongoDB), and various data types of specific interest to MongoDB. The name 'BSON' is based on the term JSON and stands for 'Binary JSON'.

Input data should be valid JSON.", inputType: "string", outputType: "ArrayBuffer", args: [] }, "BSON deserialise": { module: "BSON", description: "BSON is a computer data interchange format used mainly as a data storage and network transfer format in the MongoDB database. It is a binary form for representing simple data structures, associative arrays (called objects or documents in MongoDB), and various data types of specific interest to MongoDB. The name 'BSON' is based on the term JSON and stands for 'Binary JSON'.

Input data should be in a raw bytes format.", inputType: "ArrayBuffer", outputType: "string", args: [] }, }; */ // /** // * Exports the OperationConfig JSON object in val-loader format so that it can be loaded // * into the app without also importing all the dependencies. // * // * See https://github.com/webpack-contrib/val-loader // * // * @returns {Object} // */ // function valExport() { // return { // code: "module.exports = " + JSON.stringify(OperationConfig) + ";" // }; // } // export default valExport; // export {operations};