CyberChef/src/core/operations/ParseIPv6Address.mjs

194 lines
10 KiB
JavaScript

/**
* @author n1474335 [n1474335@gmail.com]
* @copyright Crown Copyright 2016
* @license Apache-2.0
*/
import Operation from "../Operation.mjs";
import Utils from "../Utils.mjs";
import OperationError from "../errors/OperationError.mjs";
import {strToIpv6, ipv6ToStr, ipv4ToStr, IPV6_REGEX} from "../lib/IP.mjs";
import BigNumber from "bignumber.js";
/**
* Parse IPv6 address operation
*/
class ParseIPv6Address extends Operation {
/**
* ParseIPv6Address constructor
*/
constructor() {
super();
this.name = "Parse IPv6 address";
this.module = "Default";
this.description = "Displays the longhand and shorthand versions of a valid IPv6 address.<br><br>Recognises all reserved ranges and parses encapsulated or tunnelled addresses including Teredo and 6to4.";
this.infoURL = "https://wikipedia.org/wiki/IPv6_address";
this.inputType = "string";
this.outputType = "string";
this.args = [];
}
/**
* @param {string} input
* @param {Object[]} args
* @returns {string}
*/
run(input, args) {
let match,
output = "";
if ((match = IPV6_REGEX.exec(input))) {
const ipv6 = strToIpv6(match[1]),
longhand = ipv6ToStr(ipv6),
shorthand = ipv6ToStr(ipv6, true);
output += "Longhand: " + longhand + "\nShorthand: " + shorthand + "\n";
// Detect reserved addresses
if (shorthand === "::") {
// Unspecified address
output += "\nUnspecified address corresponding to 0.0.0.0/32 in IPv4.";
output += "\nUnspecified address range: ::/128";
} else if (shorthand === "::1") {
// Loopback address
output += "\nLoopback address to the local host corresponding to 127.0.0.1/8 in IPv4.";
output += "\nLoopback addresses range: ::1/128";
} else if (ipv6[0] === 0 && ipv6[1] === 0 && ipv6[2] === 0 &&
ipv6[3] === 0 && ipv6[4] === 0 && ipv6[5] === 0xffff) {
// IPv4-mapped IPv6 address
output += "\nIPv4-mapped IPv6 address detected. IPv6 clients will be handled natively by default, and IPv4 clients appear as IPv6 clients at their IPv4-mapped IPv6 address.";
output += "\nMapped IPv4 address: " + ipv4ToStr((ipv6[6] << 16) + ipv6[7]);
output += "\nIPv4-mapped IPv6 addresses range: ::ffff:0:0/96";
} else if (ipv6[0] === 0 && ipv6[1] === 0 && ipv6[2] === 0 &&
ipv6[3] === 0 && ipv6[4] === 0xffff && ipv6[5] === 0) {
// IPv4-translated address
output += "\nIPv4-translated address detected. Used by Stateless IP/ICMP Translation (SIIT). See RFCs 6145 and 6052 for more details.";
output += "\nTranslated IPv4 address: " + ipv4ToStr((ipv6[6] << 16) + ipv6[7]);
output += "\nIPv4-translated addresses range: ::ffff:0:0:0/96";
} else if (ipv6[0] === 0x100) {
// Discard prefix per RFC 6666
output += "\nDiscard prefix detected. This is used when forwarding traffic to a sinkhole router to mitigate the effects of a denial-of-service attack. See RFC 6666 for more details.";
output += "\nDiscard range: 100::/64";
} else if (ipv6[0] === 0x64 && ipv6[1] === 0xff9b && ipv6[2] === 0 &&
ipv6[3] === 0 && ipv6[4] === 0 && ipv6[5] === 0) {
// IPv4/IPv6 translation per RFC 6052
output += "\n'Well-Known' prefix for IPv4/IPv6 translation detected. See RFC 6052 for more details.";
output += "\nTranslated IPv4 address: " + ipv4ToStr((ipv6[6] << 16) + ipv6[7]);
output += "\n'Well-Known' prefix range: 64:ff9b::/96";
} else if (ipv6[0] === 0x2001 && ipv6[1] === 0) {
// Teredo tunneling
output += "\nTeredo tunneling IPv6 address detected\n";
const serverIpv4 = (ipv6[2] << 16) + ipv6[3],
udpPort = (~ipv6[5]) & 0xffff,
clientIpv4 = ~((ipv6[6] << 16) + ipv6[7]),
flagCone = (ipv6[4] >>> 15) & 1,
flagR = (ipv6[4] >>> 14) & 1,
flagRandom1 = (ipv6[4] >>> 10) & 15,
flagUg = (ipv6[4] >>> 8) & 3,
flagRandom2 = ipv6[4] & 255;
output += "\nServer IPv4 address: " + ipv4ToStr(serverIpv4) +
"\nClient IPv4 address: " + ipv4ToStr(clientIpv4) +
"\nClient UDP port: " + udpPort +
"\nFlags:" +
"\n\tCone: " + flagCone;
if (flagCone) {
output += " (Client is behind a cone NAT)";
} else {
output += " (Client is not behind a cone NAT)";
}
output += "\n\tR: " + flagR;
if (flagR) {
output += " Error: This flag should be set to 0. See RFC 5991 and RFC 4380.";
}
output += "\n\tRandom1: " + Utils.bin(flagRandom1, 4) +
"\n\tUG: " + Utils.bin(flagUg, 2);
if (flagUg) {
output += " Error: This flag should be set to 00. See RFC 4380.";
}
output += "\n\tRandom2: " + Utils.bin(flagRandom2, 8);
if (!flagR && !flagUg && flagRandom1 && flagRandom2) {
output += "\n\nThis is a valid Teredo address which complies with RFC 4380 and RFC 5991.";
} else if (!flagR && !flagUg) {
output += "\n\nThis is a valid Teredo address which complies with RFC 4380, however it does not comply with RFC 5991 (Teredo Security Updates) as there are no randomised bits in the flag field.";
} else {
output += "\n\nThis is an invalid Teredo address.";
}
output += "\n\nTeredo prefix range: 2001::/32";
} else if (ipv6[0] === 0x2001 && ipv6[1] === 0x2 && ipv6[2] === 0) {
// Benchmarking
output += "\nAssigned to the Benchmarking Methodology Working Group (BMWG) for benchmarking IPv6. Corresponds to 198.18.0.0/15 for benchmarking IPv4. See RFC 5180 for more details.";
output += "\nBMWG range: 2001:2::/48";
} else if (ipv6[0] === 0x2001 && ipv6[1] >= 0x10 && ipv6[1] <= 0x1f) {
// ORCHIDv1
output += "\nDeprecated, previously ORCHIDv1 (Overlay Routable Cryptographic Hash Identifiers).\nORCHIDv1 range: 2001:10::/28\nORCHIDv2 now uses 2001:20::/28.";
} else if (ipv6[0] === 0x2001 && ipv6[1] >= 0x20 && ipv6[1] <= 0x2f) {
// ORCHIDv2
output += "\nORCHIDv2 (Overlay Routable Cryptographic Hash Identifiers).\nThese are non-routed IPv6 addresses used for Cryptographic Hash Identifiers.";
output += "\nORCHIDv2 range: 2001:20::/28";
} else if (ipv6[0] === 0x2001 && ipv6[1] === 0xdb8) {
// Documentation
output += "\nThis is a documentation IPv6 address. This range should be used whenever an example IPv6 address is given or to model networking scenarios. Corresponds to 192.0.2.0/24, 198.51.100.0/24, and 203.0.113.0/24 in IPv4.";
output += "\nDocumentation range: 2001:db8::/32";
} else if (ipv6[0] === 0x2002) {
// 6to4
output += "\n6to4 transition IPv6 address detected. See RFC 3056 for more details." +
"\n6to4 prefix range: 2002::/16";
const v4Addr = ipv4ToStr((ipv6[1] << 16) + ipv6[2]),
slaId = ipv6[3],
interfaceIdStr = ipv6[4].toString(16) + ipv6[5].toString(16) + ipv6[6].toString(16) + ipv6[7].toString(16),
interfaceId = new BigNumber(interfaceIdStr, 16);
output += "\n\nEncapsulated IPv4 address: " + v4Addr +
"\nSLA ID: " + slaId +
"\nInterface ID (base 16): " + interfaceIdStr +
"\nInterface ID (base 10): " + interfaceId.toString();
} else if (ipv6[0] >= 0xfc00 && ipv6[0] <= 0xfdff) {
// Unique local address
output += "\nThis is a unique local address comparable to the IPv4 private addresses 10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16. See RFC 4193 for more details.";
output += "\nUnique local addresses range: fc00::/7";
} else if (ipv6[0] >= 0xfe80 && ipv6[0] <= 0xfebf) {
// Link-local address
output += "\nThis is a link-local address comparable to the auto-configuration addresses 169.254.0.0/16 in IPv4.";
output += "\nLink-local addresses range: fe80::/10";
} else if (ipv6[0] >= 0xff00) {
// Multicast
output += "\nThis is a reserved multicast address.";
output += "\nMulticast addresses range: ff00::/8";
}
// Detect possible EUI-64 addresses
if (((ipv6[5] & 0xff) === 0xff) && (ipv6[6] >>> 8 === 0xfe)) {
output += "\n\nThis IPv6 address contains a modified EUI-64 address, identified by the presence of FF:FE in the 12th and 13th octets.";
const intIdent = Utils.hex(ipv6[4] >>> 8) + ":" + Utils.hex(ipv6[4] & 0xff) + ":" +
Utils.hex(ipv6[5] >>> 8) + ":" + Utils.hex(ipv6[5] & 0xff) + ":" +
Utils.hex(ipv6[6] >>> 8) + ":" + Utils.hex(ipv6[6] & 0xff) + ":" +
Utils.hex(ipv6[7] >>> 8) + ":" + Utils.hex(ipv6[7] & 0xff),
mac = Utils.hex((ipv6[4] >>> 8) ^ 2) + ":" + Utils.hex(ipv6[4] & 0xff) + ":" +
Utils.hex(ipv6[5] >>> 8) + ":" + Utils.hex(ipv6[6] & 0xff) + ":" +
Utils.hex(ipv6[7] >>> 8) + ":" + Utils.hex(ipv6[7] & 0xff);
output += "\nInterface identifier: " + intIdent +
"\nMAC address: " + mac;
}
} else {
throw new OperationError("Invalid IPv6 address");
}
return output;
}
}
export default ParseIPv6Address;