mirror of
https://github.com/gchq/CyberChef.git
synced 2024-11-16 08:58:30 +01:00
97 lines
2.9 KiB
JavaScript
97 lines
2.9 KiB
JavaScript
/**
|
|
* @author n1474335 [n1474335@gmail.com]
|
|
* @copyright Crown Copyright 2016
|
|
* @license Apache-2.0
|
|
*/
|
|
|
|
import Operation from "../Operation";
|
|
import Utils from "../Utils";
|
|
|
|
/**
|
|
* Entropy operation
|
|
*/
|
|
class Entropy extends Operation {
|
|
|
|
/**
|
|
* Entropy constructor
|
|
*/
|
|
constructor() {
|
|
super();
|
|
|
|
this.name = "Entropy";
|
|
this.module = "Default";
|
|
this.description = "Shannon Entropy, in the context of information theory, is a measure of the rate at which information is produced by a source of data. It can be used, in a broad sense, to detect whether data is likely to be structured or unstructured. 8 is the maximum, representing highly unstructured, 'random' data. English language text usually falls somewhere between 3.5 and 5. Properly encrypted or compressed data should have an entropy of over 7.5.";
|
|
this.infoURL = "https://wikipedia.org/wiki/Entropy_(information_theory)";
|
|
this.inputType = "byteArray";
|
|
this.outputType = "number";
|
|
this.presentType = "html";
|
|
this.args = [];
|
|
}
|
|
|
|
/**
|
|
* @param {byteArray} input
|
|
* @param {Object[]} args
|
|
* @returns {number}
|
|
*/
|
|
run(input, args) {
|
|
const prob = [],
|
|
uniques = input.unique(),
|
|
str = Utils.byteArrayToChars(input);
|
|
let i;
|
|
|
|
for (i = 0; i < uniques.length; i++) {
|
|
prob.push(str.count(Utils.chr(uniques[i])) / input.length);
|
|
}
|
|
|
|
let entropy = 0,
|
|
p;
|
|
|
|
for (i = 0; i < prob.length; i++) {
|
|
p = prob[i];
|
|
entropy += p * Math.log(p) / Math.log(2);
|
|
}
|
|
|
|
return -entropy;
|
|
}
|
|
|
|
/**
|
|
* Displays the entropy as a scale bar for web apps.
|
|
*
|
|
* @param {number} entropy
|
|
* @returns {html}
|
|
*/
|
|
present(entropy) {
|
|
return `Shannon entropy: ${entropy}
|
|
<br><canvas id='chart-area'></canvas><br>
|
|
- 0 represents no randomness (i.e. all the bytes in the data have the same value) whereas 8, the maximum, represents a completely random string.
|
|
- Standard English text usually falls somewhere between 3.5 and 5.
|
|
- Properly encrypted or compressed data of a reasonable length should have an entropy of over 7.5.
|
|
|
|
The following results show the entropy of chunks of the input data. Chunks with particularly high entropy could suggest encrypted or compressed sections.
|
|
|
|
<br><script>
|
|
var canvas = document.getElementById("chart-area"),
|
|
parentRect = canvas.parentNode.getBoundingClientRect(),
|
|
entropy = ${entropy},
|
|
height = parentRect.height * 0.25;
|
|
|
|
canvas.width = parentRect.width * 0.95;
|
|
canvas.height = height > 150 ? 150 : height;
|
|
|
|
CanvasComponents.drawScaleBar(canvas, entropy, 8, [
|
|
{
|
|
label: "English text",
|
|
min: 3.5,
|
|
max: 5
|
|
},{
|
|
label: "Encrypted/compressed",
|
|
min: 7.5,
|
|
max: 8
|
|
}
|
|
]);
|
|
</script>`;
|
|
}
|
|
|
|
}
|
|
|
|
export default Entropy;
|