CyberChef/src/core/lib/SIGABA.mjs

503 lines
15 KiB
JavaScript

/**
* Emulation of the SIGABA machine
*
* @author hettysymes
* @copyright hettysymes 2020
* @license Apache-2.0
*/
/**
* A set of randomised example SIGABA cipher/control rotors (these rotors are interchangeable). Cipher and control rotors can be referred to as C and R rotors respectively.
*/
export const CR_ROTORS = [
{name: "Example 1", value: "SRGWANHPJZFXVIDQCEUKBYOLMT"},
{name: "Example 2", value: "THQEFSAZVKJYULBODCPXNIMWRG"},
{name: "Example 3", value: "XDTUYLEVFNQZBPOGIRCSMHWKAJ"},
{name: "Example 4", value: "LOHDMCWUPSTNGVXYFJREQIKBZA"},
{name: "Example 5", value: "ERXWNZQIJYLVOFUMSGHTCKPBDA"},
{name: "Example 6", value: "FQECYHJIOUMDZVPSLKRTGWXBAN"},
{name: "Example 7", value: "TBYIUMKZDJSOPEWXVANHLCFQGR"},
{name: "Example 8", value: "QZUPDTFNYIAOMLEBWJXCGHKRSV"},
{name: "Example 9", value: "CZWNHEMPOVXLKRSIDGJFYBTQAU"},
{name: "Example 10", value: "ENPXJVKYQBFZTICAGMOHWRLDUS"}
];
/**
* A set of randomised example SIGABA index rotors (may be referred to as I rotors).
*/
export const I_ROTORS = [
{name: "Example 1", value: "6201348957"},
{name: "Example 2", value: "6147253089"},
{name: "Example 3", value: "8239647510"},
{name: "Example 4", value: "7194835260"},
{name: "Example 5", value: "4873205916"}
];
export const NUMBERS = "0123456789".split("");
/**
* Converts a letter to uppercase (if it already isn't)
*
* @param {char} letter - letter to convert to uppercase
* @returns {char}
*/
export function convToUpperCase(letter) {
const charCode = letter.charCodeAt();
if (97<=charCode && charCode<=122) {
return String.fromCharCode(charCode-32);
}
return letter;
}
/**
* The SIGABA machine consisting of the 3 rotor banks: cipher, control and index banks.
*/
export class SigabaMachine {
/**
* SigabaMachine constructor
*
* @param {Object[]} cipherRotors - list of CRRotors
* @param {Object[]} controlRotors - list of CRRotors
* @param {object[]} indexRotors - list of IRotors
*/
constructor(cipherRotors, controlRotors, indexRotors) {
this.cipherBank = new CipherBank(cipherRotors);
this.controlBank = new ControlBank(controlRotors);
this.indexBank = new IndexBank(indexRotors);
}
/**
* Steps all the correct rotors in the machine.
*/
step() {
const controlOut = this.controlBank.goThroughControl();
const indexOut = this.indexBank.goThroughIndex(controlOut);
this.cipherBank.step(indexOut);
}
/**
* Encrypts a letter. A space is converted to a "Z" before encryption, and a "Z" is converted to an "X". This allows spaces to be encrypted.
*
* @param {char} letter - letter to encrypt
* @returns {char}
*/
encryptLetter(letter) {
letter = convToUpperCase(letter);
if (letter === " ") {
letter = "Z";
} else if (letter === "Z") {
letter = "X";
}
const encryptedLetter = this.cipherBank.encrypt(letter);
this.step();
return encryptedLetter;
}
/**
* Decrypts a letter. A letter decrypted as a "Z" is converted to a space before it is output, since spaces are converted to "Z"s before encryption.
*
* @param {char} letter - letter to decrypt
* @returns {char}
*/
decryptLetter(letter) {
letter = convToUpperCase(letter);
let decryptedLetter = this.cipherBank.decrypt(letter);
if (decryptedLetter === "Z") {
decryptedLetter = " ";
}
this.step();
return decryptedLetter;
}
/**
* Encrypts a message of one or more letters
*
* @param {string} msg - message to encrypt
* @returns {string}
*/
encrypt(msg) {
let ciphertext = "";
for (const letter of msg) {
ciphertext = ciphertext.concat(this.encryptLetter(letter));
}
return ciphertext;
}
/**
* Decrypts a message of one or more letters
*
* @param {string} msg - message to decrypt
* @returns {string}
*/
decrypt(msg) {
let plaintext = "";
for (const letter of msg) {
plaintext = plaintext.concat(this.decryptLetter(letter));
}
return plaintext;
}
}
/**
* The cipher rotor bank consists of 5 cipher rotors in either a forward or reversed orientation.
*/
export class CipherBank {
/**
* CipherBank constructor
*
* @param {Object[]} rotors - list of CRRotors
*/
constructor(rotors) {
this.rotors = rotors;
}
/**
* Encrypts a letter through the cipher rotors (signal goes from left-to-right)
*
* @param {char} inputPos - the input position of the signal (letter to be encrypted)
* @returns {char}
*/
encrypt(inputPos) {
for (const rotor of this.rotors) {
inputPos = rotor.crypt(inputPos, "leftToRight");
}
return inputPos;
}
/**
* Decrypts a letter through the cipher rotors (signal goes from right-to-left)
*
* @param {char} inputPos - the input position of the signal (letter to be decrypted)
* @returns {char}
*/
decrypt(inputPos) {
const revOrderedRotors = [...this.rotors].reverse();
for (const rotor of revOrderedRotors) {
inputPos = rotor.crypt(inputPos, "rightToLeft");
}
return inputPos;
}
/**
* Step the cipher rotors forward according to the inputs from the index rotors
*
* @param {number[]} indexInputs - the inputs from the index rotors
*/
step(indexInputs) {
const logicDict = {0: [0, 9], 1: [7, 8], 2: [5, 6], 3: [3, 4], 4: [1, 2]};
const rotorsToMove = [];
for (const key in logicDict) {
const item = logicDict[key];
for (const i of indexInputs) {
if (item.includes(i)) {
rotorsToMove.push(this.rotors[key]);
break;
}
}
}
for (const rotor of rotorsToMove) {
rotor.step();
}
}
}
/**
* The control rotor bank consists of 5 control rotors in either a forward or reversed orientation. Signals to the control rotor bank always go from right-to-left.
*/
export class ControlBank {
/**
* ControlBank constructor. The rotors have been reversed as signals go from right-to-left through the control rotors.
*
* @param {Object[]} rotors - list of CRRotors
*/
constructor(rotors) {
this.rotors = [...rotors].reverse();
}
/**
* Encrypts a letter.
*
* @param {char} inputPos - the input position of the signal
* @returns {char}
*/
crypt(inputPos) {
for (const rotor of this.rotors) {
inputPos = rotor.crypt(inputPos, "rightToLeft");
}
return inputPos;
}
/**
* Gets the outputs of the control rotors. The inputs to the control rotors are always "F", "G", "H" and "I".
*
* @returns {number[]}
*/
getOutputs() {
const outputs = [this.crypt("F"), this.crypt("G"), this.crypt("H"), this.crypt("I")];
const logicDict = {1: "B", 2: "C", 3: "DE", 4: "FGH", 5: "IJK", 6: "LMNO", 7: "PQRST", 8: "UVWXYZ", 9: "A"};
const numberOutputs = [];
for (const key in logicDict) {
const item = logicDict[key];
for (const output of outputs) {
if (item.includes(output)) {
numberOutputs.push(key);
break;
}
}
}
return numberOutputs;
}
/**
* Steps the control rotors. Only 3 of the control rotors step: one after every encryption, one after every 26, and one after every 26 squared.
*/
step() {
const MRotor = this.rotors[1], FRotor = this.rotors[2], SRotor = this.rotors[3];
// 14 is the offset of "O" from "A" - the next rotor steps once the previous rotor reaches "O"
if (FRotor.state === 14) {
if (MRotor.state === 14) {
SRotor.step();
}
MRotor.step();
}
FRotor.step();
}
/**
* The goThroughControl function combines getting the outputs from the control rotor bank and then stepping them.
*
* @returns {number[]}
*/
goThroughControl() {
const outputs = this.getOutputs();
this.step();
return outputs;
}
}
/**
* The index rotor bank consists of 5 index rotors all placed in the forwards orientation.
*/
export class IndexBank {
/**
* IndexBank constructor
*
* @param {Object[]} rotors - list of IRotors
*/
constructor(rotors) {
this.rotors = rotors;
}
/**
* Encrypts a number.
*
* @param {number} inputPos - the input position of the signal
* @returns {number}
*/
crypt(inputPos) {
for (const rotor of this.rotors) {
inputPos = rotor.crypt(inputPos);
}
return inputPos;
}
/**
* The goThroughIndex function takes the inputs from the control rotor bank and returns the list of outputs after encryption through the index rotors.
*
* @param {number[]} controlInputs - inputs from the control rotors
* @returns {number[]}
*/
goThroughIndex(controlInputs) {
const outputs = [];
for (const inp of controlInputs) {
outputs.push(this.crypt(inp));
}
return outputs;
}
}
/**
* Rotor class
*/
export class Rotor {
/**
* Rotor constructor
*
* @param {number[]} wireSetting - the wirings within the rotor: mapping from left-to-right, the index of the number in the list maps onto the number at that index
* @param {bool} rev - true if the rotor is reversed, false if it isn't
* @param {number} key - the starting position or state of the rotor
*/
constructor(wireSetting, key, rev) {
this.state = key;
this.numMapping = this.getNumMapping(wireSetting, rev);
this.posMapping = this.getPosMapping(rev);
}
/**
* Get the number mapping from the wireSetting (only different from wireSetting if rotor is reversed)
*
* @param {number[]} wireSetting - the wirings within the rotors
* @param {bool} rev - true if reversed, false if not
* @returns {number[]}
*/
getNumMapping(wireSetting, rev) {
if (rev===false) {
return wireSetting;
} else {
const length = wireSetting.length;
const tempMapping = new Array(length);
for (let i=0; i<length; i++) {
tempMapping[wireSetting[i]] = i;
}
return tempMapping;
}
}
/**
* Get the position mapping (how the position numbers map onto the numbers of the rotor)
*
* @param {bool} rev - true if reversed, false if not
* @returns {number[]}
*/
getPosMapping(rev) {
const length = this.numMapping.length;
const posMapping = [];
if (rev===false) {
for (let i = this.state; i < this.state+length; i++) {
let res = i%length;
if (res<0) {
res += length;
}
posMapping.push(res);
}
} else {
for (let i = this.state; i > this.state-length; i--) {
let res = i%length;
if (res<0) {
res += length;
}
posMapping.push(res);
}
}
return posMapping;
}
/**
* Encrypt/decrypt data. This process is identical to the rotors of cipher machines such as Enigma or Typex.
*
* @param {number} inputPos - the input position of the signal (the data to encrypt/decrypt)
* @param {string} direction - one of "leftToRight" and "rightToLeft", states the direction in which the signal passes through the rotor
* @returns {number}
*/
cryptNum(inputPos, direction) {
const inpNum = this.posMapping[inputPos];
let outNum;
if (direction === "leftToRight") {
outNum = this.numMapping[inpNum];
} else if (direction === "rightToLeft") {
outNum = this.numMapping.indexOf(inpNum);
}
const outPos = this.posMapping.indexOf(outNum);
return outPos;
}
/**
* Steps the rotor. The number at position 0 will be moved to position 1 etc.
*/
step() {
const lastNum = this.posMapping.pop();
this.posMapping.splice(0, 0, lastNum);
this.state = this.posMapping[0];
}
}
/**
* A CRRotor is a cipher (C) or control (R) rotor. These rotors are identical and interchangeable. A C or R rotor consists of 26 contacts, one for each letter, and may be put into either a forwards of reversed orientation.
*/
export class CRRotor extends Rotor {
/**
* CRRotor constructor
*
* @param {string} wireSetting - the rotor wirings (string of letters)
* @param {char} key - initial state of rotor
* @param {bool} rev - true if reversed, false if not
*/
constructor(wireSetting, key, rev=false) {
wireSetting = wireSetting.split("").map(CRRotor.letterToNum);
super(wireSetting, CRRotor.letterToNum(key), rev);
}
/**
* Static function which converts a letter into its number i.e. its offset from the letter "A"
*
* @param {char} letter - letter to convert to number
* @returns {number}
*/
static letterToNum(letter) {
return letter.charCodeAt()-65;
}
/**
* Static function which converts a number (a letter's offset from "A") into its letter
*
* @param {number} num - number to convert to letter
* @returns {char}
*/
static numToLetter(num) {
return String.fromCharCode(num+65);
}
/**
* Encrypts/decrypts a letter.
*
* @param {char} inputPos - the input position of the signal ("A" refers to position 0 etc.)
* @param {string} direction - one of "leftToRight" and "rightToLeft"
* @returns {char}
*/
crypt(inputPos, direction) {
inputPos = CRRotor.letterToNum(inputPos);
const outPos = this.cryptNum(inputPos, direction);
return CRRotor.numToLetter(outPos);
}
}
/**
* An IRotor is an index rotor, which consists of 10 contacts each numbered from 0 to 9. Unlike C and R rotors, they cannot be put in the reversed orientation. The index rotors do not step at any point during encryption or decryption.
*/
export class IRotor extends Rotor {
/**
* IRotor constructor
*
* @param {string} wireSetting - the rotor wirings (string of numbers)
* @param {char} key - initial state of rotor
*/
constructor(wireSetting, key) {
wireSetting = wireSetting.split("").map(Number);
super(wireSetting, Number(key), false);
}
/**
* Encrypts a number
*
* @param {number} inputPos - the input position of the signal
* @returns {number}
*/
crypt(inputPos) {
return this.cryptNum(inputPos, "leftToRight");
}
}