btop/src/btop_linux.cpp

435 lines
13 KiB
C++
Raw Normal View History

/* Copyright 2021 Aristocratos (jakob@qvantnet.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
indent = tab
tab-size = 4
*/
#if defined(__linux__)
#include <string>
#include <vector>
#include <atomic>
#include <fstream>
#include <filesystem>
#include <ranges>
#include <list>
#include <robin_hood.h>
#include <cmath>
#include <iostream>
#include <cmath>
#include <unistd.h>
2021-06-20 00:49:13 +02:00
#include <btop_shared.hpp>
2021-06-19 22:48:31 +02:00
#include <btop_config.hpp>
#include <btop_tools.hpp>
using std::string, std::vector, std::ifstream, std::atomic, std::numeric_limits, std::streamsize,
std::round, std::string_literals::operator""s, robin_hood::unordered_flat_map;
namespace fs = std::filesystem;
namespace rng = std::ranges;
using namespace Tools;
//? --------------------------------------------------- FUNCTIONS -----------------------------------------------------
namespace Tools {
double system_uptime(){
string upstr;
ifstream pread("/proc/uptime");
getline(pread, upstr, ' ');
pread.close();
return stod(upstr);
}
}
2021-06-25 23:58:19 +02:00
namespace Shared {
fs::path proc_path;
fs::path passwd_path;
fs::file_time_type passwd_time;
long page_size;
long clk_tck;
void init(){
proc_path = (fs::is_directory(fs::path("/proc")) and access("/proc", R_OK) != -1) ? "/proc" : "";
if (proc_path.empty()) {
string errmsg = "Proc filesystem not found or no permission to read from it!";
Logger::error(errmsg);
std::cout << "ERROR: " << errmsg << std::endl;
exit(1);
}
passwd_path = (access("/etc/passwd", R_OK) != -1) ? fs::path("/etc/passwd") : passwd_path;
if (passwd_path.empty()) Logger::warning("Could not read /etc/passwd, will show UID instead of username.");
page_size = sysconf(_SC_PAGE_SIZE);
if (page_size <= 0) {
page_size = 4096;
Logger::warning("Could not get system page size. Defaulting to 4096, processes memory usage might be incorrect.");
}
clk_tck = sysconf(_SC_CLK_TCK);
if (clk_tck <= 0) {
clk_tck = 100;
Logger::warning("Could not get system clocks per second. Defaulting to 100, processes cpu usage might be incorrect.");
}
}
}
namespace Proc {
namespace {
struct p_cache {
string name, cmd, user;
uint64_t cpu_t = 0, cpu_s = 0;
string prefix = "";
size_t depth = 0;
bool collapsed = false;
};
unordered_flat_map<size_t, p_cache> cache;
unordered_flat_map<string, string> uid_user;
int counter = 0;
}
uint64_t old_cputimes = 0;
size_t numpids = 500;
atomic<bool> stop (false);
atomic<bool> collecting (false);
vector<string> sort_vector = {
"pid",
"name",
"command",
"threads",
"user",
"memory",
"cpu direct",
"cpu lazy",
};
//* Generate process tree list
void _tree_gen(const proc_info& cur_proc, const vector<proc_info>& in_procs, vector<proc_info>& out_procs, int cur_depth, const bool collapsed, const string& prefix, const string& filter, bool found){
auto cur_pos = out_procs.size();
bool filtering = false;
//? If filtering, include children of matching processes
if (not filter.empty() and not found) {
if (std::to_string(cur_proc.pid).find(filter) == string::npos
and cur_proc.name.find(filter) == string::npos
and cur_proc.cmd.find(filter) == string::npos
and cur_proc.user.find(filter) == string::npos) {
filtering = true;
}
else {
found = true;
cur_depth = 0;
}
}
if (not collapsed and not filtering)
out_procs.push_back(cur_proc);
2021-06-20 22:07:04 +02:00
int children = 0;
2021-06-20 22:07:04 +02:00
for (auto& p : rng::equal_range(in_procs, cur_proc.pid, rng::less{}, &proc_info::ppid)) {
if (collapsed and not filtering) {
2021-06-20 22:07:04 +02:00
out_procs.back().cpu_p += p.cpu_p;
out_procs.back().mem += p.mem;
out_procs.back().threads += p.threads;
}
2021-06-27 01:19:57 +02:00
else children++;
_tree_gen(p, in_procs, out_procs, cur_depth + 1, (collapsed ? true : cache.at(cur_proc.pid).collapsed), prefix, filter, found);
}
if (collapsed or filtering) return;
2021-06-27 01:19:57 +02:00
if (out_procs.size() > cur_pos + 1 and not out_procs.back().prefix.ends_with("] "))
out_procs.back().prefix.replace(out_procs.back().prefix.size() - 8, 8, " └─ ");
2021-06-20 22:07:04 +02:00
out_procs.at(cur_pos).prefix = ""s * cur_depth + (children > 0 ? (cache.at(cur_proc.pid).collapsed ? "[+] " : "[-] ") : prefix);
}
vector<proc_info> current_procs;
//* Collects and sorts process information from /proc, saves to and returns reference to Proc::current_procs;
vector<proc_info>& collect(){
atomic_wait_set(collecting);
auto& sorting = Config::getS("proc_sorting");
auto& reverse = Config::getB("proc_reversed");
auto& filter = Config::getS("proc_filter");
auto& per_core = Config::getB("proc_per_core");
auto& tree = Config::getB("proc_tree");
ifstream pread;
2021-06-25 23:58:19 +02:00
string long_string;
string short_str;
auto uptime = system_uptime();
vector<proc_info> procs;
procs.reserve((numpids + 10));
int npids = 0;
int cmult = (per_core) ? Global::coreCount : 1;
//* Update uid_user map if /etc/passwd changed since last run
2021-06-25 23:58:19 +02:00
if (not Shared::passwd_path.empty() and fs::last_write_time(Shared::passwd_path) != Shared::passwd_time) {
string r_uid, r_user;
2021-06-25 23:58:19 +02:00
Shared::passwd_time = fs::last_write_time(Shared::passwd_path);
uid_user.clear();
2021-06-25 23:58:19 +02:00
pread.open(Shared::passwd_path);
if (pread.good()) {
2021-06-21 22:52:55 +02:00
while (not pread.eof()){
getline(pread, r_user, ':');
pread.ignore(SSmax, ':');
getline(pread, r_uid, ':');
uid_user[r_uid] = r_user;
pread.ignore(SSmax, '\n');
}
}
pread.close();
}
//* Get cpu total times from /proc/stat
uint64_t cputimes = 0;
2021-06-25 23:58:19 +02:00
pread.open(Shared::proc_path / "stat");
if (pread.good()) {
pread.ignore(SSmax, ' ');
for (uint64_t times; pread >> times; cputimes += times);
pread.close();
}
else return current_procs;
//* Iterate over all pids in /proc
2021-06-25 23:58:19 +02:00
for (auto& d: fs::directory_iterator(Shared::proc_path)){
if (pread.is_open()) pread.close();
2021-06-22 19:19:14 +02:00
if (stop) {
collecting = false;
stop = false;
return current_procs;
}
bool new_cache = false;
string pid_str = d.path().filename();
2021-06-21 22:52:55 +02:00
if (d.is_directory() and isdigit(pid_str[0])) {
npids++;
proc_info new_proc (stoul(pid_str));
//* Cache program name, command and username
2021-06-21 22:52:55 +02:00
if (not cache.contains(new_proc.pid)) {
string name, cmd, user;
new_cache = true;
pread.open(d.path() / "comm");
if (pread.good()) {
getline(pread, name);
pread.close();
}
else continue;
pread.open(d.path() / "cmdline");
if (pread.good()) {
2021-06-27 01:19:57 +02:00
string tmpstr;
2021-06-25 23:58:19 +02:00
while(getline(pread, tmpstr, '\0')) cmd += tmpstr + ' ';
pread.close();
2021-06-21 22:52:55 +02:00
if (not cmd.empty()) cmd.pop_back();
}
else continue;
pread.open(d.path() / "status");
if (pread.good()) {
string uid;
2021-06-21 22:52:55 +02:00
while (not pread.eof()){
string line;
getline(pread, line, ':');
if (line == "Uid") {
pread.ignore();
getline(pread, uid, '\t');
break;
} else {
pread.ignore(SSmax, '\n');
}
}
pread.close();
2021-06-22 22:06:31 +02:00
user = (uid_user.contains(uid)) ? uid_user.at(uid) : uid;
}
else continue;
cache[new_proc.pid] = {name, cmd, user};
}
//* Match filter if defined
if (not tree and not filter.empty()
2021-06-21 22:52:55 +02:00
and pid_str.find(filter) == string::npos
and cache[new_proc.pid].name.find(filter) == string::npos
and cache[new_proc.pid].cmd.find(filter) == string::npos
and cache[new_proc.pid].user.find(filter) == string::npos) {
if (new_cache) cache.erase(new_proc.pid);
continue;
}
new_proc.name = cache[new_proc.pid].name;
new_proc.cmd = cache[new_proc.pid].cmd;
new_proc.user = cache[new_proc.pid].user;
//* Parse /proc/[pid]/stat
pread.open(d.path() / "stat");
if (pread.good()) {
2021-06-27 01:19:57 +02:00
//? Check cached name for whitespace characters and set offset to get correct fields from stat file
size_t offset = rng::count(cache.at(new_proc.pid).name, ' ');
size_t x = 0, next_x = 3;
uint64_t cpu_t = 0;
2021-06-19 22:48:31 +02:00
try {
2021-06-27 01:19:57 +02:00
while (not pread.eof()) {
if (++x > 40 + offset) break;
if (x-offset < next_x) {
pread.ignore(SSmax, ' ');
continue;
}
else
getline(pread, short_str, ' ');
switch (x-offset) {
case 3: { //? Process state
new_proc.state = short_str[0];
2021-06-19 22:48:31 +02:00
break;
}
2021-06-27 01:19:57 +02:00
case 4: { //? Process parent pid
new_proc.ppid = stoull(short_str);
next_x = 14;
2021-06-19 22:48:31 +02:00
break;
}
2021-06-27 01:19:57 +02:00
case 14: { //? Process utime
cpu_t = stoull(short_str);
2021-06-19 22:48:31 +02:00
break;
}
2021-06-27 01:19:57 +02:00
case 15: { //? Process stime
cpu_t += stoull(short_str);
next_x = 19;
2021-06-19 22:48:31 +02:00
break;
}
2021-06-27 01:19:57 +02:00
case 19: { //? Process nice value
new_proc.p_nice = stoull(short_str);
2021-06-19 22:48:31 +02:00
break;
}
2021-06-27 01:19:57 +02:00
case 20: { //? Process number of threads
new_proc.threads = stoull(short_str);
next_x = (new_cache) ? 22 : 40;
2021-06-19 22:48:31 +02:00
break;
}
2021-06-27 01:19:57 +02:00
case 22: { //? Cache cpu seconds
cache[new_proc.pid].cpu_s = stoull(short_str);
next_x = 40;
2021-06-19 22:48:31 +02:00
break;
}
2021-06-27 01:19:57 +02:00
case 40: { //? CPU number last executed on
new_proc.cpu_n = stoull(short_str);
2021-06-19 22:48:31 +02:00
break;
}
}
2021-06-25 23:58:19 +02:00
}
2021-06-27 01:19:57 +02:00
pread.close();
2021-06-19 22:48:31 +02:00
}
2021-06-22 22:06:31 +02:00
catch (...) {
2021-06-19 22:48:31 +02:00
continue;
}
2021-06-27 01:19:57 +02:00
if (x-offset < 22) continue;
//? Process cpu usage since last update
new_proc.cpu_p = round(cmult * 1000 * (cpu_t - cache[new_proc.pid].cpu_t) / (cputimes - old_cputimes)) / 10.0;
//? Process cumulative cpu usage since process start
2021-06-25 23:58:19 +02:00
new_proc.cpu_c = ((double)cpu_t / Shared::clk_tck) / (uptime - (cache[new_proc.pid].cpu_s / Shared::clk_tck));
//? Update cache with latest cpu times
cache[new_proc.pid].cpu_t = cpu_t;
}
else continue;
//* Get RSS memory in bytes from /proc/[pid]/statm
pread.open(d.path() / "statm");
if (pread.good()) {
pread.ignore(SSmax, ' ');
2021-06-25 23:58:19 +02:00
getline(pread, short_str, ' ');
pread.close();
2021-06-25 23:58:19 +02:00
new_proc.mem = stoull(short_str) * Shared::page_size;
}
2021-06-20 22:07:04 +02:00
//? Push process to vector
procs.push_back(new_proc);
}
}
//* Sort processes
2021-06-20 22:07:04 +02:00
auto cmp = [&reverse](const auto &a, const auto &b) { return (reverse ? a < b : a > b); };
2021-06-20 00:04:02 +02:00
switch (v_index(sort_vector, sorting)) {
case 0: { rng::sort(procs, cmp, &proc_info::pid); break; }
case 1: { rng::sort(procs, cmp, &proc_info::name); break; }
case 2: { rng::sort(procs, cmp, &proc_info::cmd); break; }
case 3: { rng::sort(procs, cmp, &proc_info::threads); break; }
case 4: { rng::sort(procs, cmp, &proc_info::user); break; }
case 5: { rng::sort(procs, cmp, &proc_info::mem); break; }
case 6: { rng::sort(procs, cmp, &proc_info::cpu_p); break; }
case 7: { rng::sort(procs, cmp, &proc_info::cpu_c); break; }
}
//* When sorting with "cpu lazy" push processes over threshold cpu usage to the front regardless of cumulative usage
2021-06-27 01:19:57 +02:00
if (not tree and not reverse and sorting == "cpu lazy") {
double max = 10.0, target = 30.0;
for (size_t i = 0, offset = 0; i < procs.size(); i++) {
2021-06-21 22:52:55 +02:00
if (i <= 5 and procs[i].cpu_p > max)
max = procs[i].cpu_p;
else if (i == 6)
target = (max > 30.0) ? max : 10.0;
2021-06-21 22:52:55 +02:00
if (i == offset and procs[i].cpu_p > 30.0)
offset++;
2021-06-25 23:58:19 +02:00
else if (procs[i].cpu_p > target)
rotate(procs.begin() + offset, procs.begin() + i, procs.begin() + i + 1);
}
}
//* Generate tree view if enabled
if (tree) {
vector<proc_info> tree_procs;
2021-06-20 22:07:04 +02:00
//? Stable sort to retain selected sorting among processes with the same parent
rng::stable_sort(procs, rng::less{}, &proc_info::ppid);
string prefix = " ├─ ";
2021-06-27 01:19:57 +02:00
//? Start recursive iteration over processes with the lowest shared parent pids
2021-06-20 22:07:04 +02:00
for (auto& p : rng::equal_range(procs, procs.at(0).ppid, rng::less{}, &proc_info::ppid)) {
_tree_gen(p, procs, tree_procs, 0, cache.at(p.pid).collapsed, prefix, filter, false);
}
procs.swap(tree_procs);
}
//* Clear dead processes from cache at a regular interval
2021-06-21 22:52:55 +02:00
if (++counter >= 10000 or ((int)cache.size() > npids + 100)) {
counter = 0;
unordered_flat_map<size_t, p_cache> r_cache;
2021-06-27 01:19:57 +02:00
r_cache.reserve(procs.size());
rng::for_each(procs, [&r_cache](const auto &p){
if (cache.contains(p.pid))
r_cache[p.pid] = cache.at(p.pid);
});
cache.swap(r_cache);
}
2021-06-20 22:07:04 +02:00
old_cputimes = cputimes;
current_procs.swap(procs);
numpids = npids;
2021-06-22 19:19:14 +02:00
collecting = false;
return current_procs;
}
}
#endif