/* Copyright 2021 Aristocratos (jakob@qvantnet.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. indent = tab tab-size = 4 */ #ifndef _btop_linux_included_ #define _btop_linux_included_ #include #include #include #include #include #include #include #include #include #include #include #include namespace fs = std::filesystem; using namespace std; namespace Global { const string SYSTEM = "linux"; filesystem::path proc_path; } class Processes { uint64_t tstamp; long int clk_tck; map> cache; map sorts = { {"pid", 0}, {"name", 1}, {"command", 2}, {"threads", 3}, {"user", 4}, {"memory", 5}, {"cpu direct", 6}, {"cpu lazy", 7} }; map uid_user; fs::path passwd_path; fs::file_time_type passwd_time; map cpu_times; map cpu_second; uint counter = 0; long page_size = sysconf(_SC_PAGE_SIZE); public: atomic stop; atomic running; //* Collects process information from /proc and returns a vector of tuples auto collect(string sorting="pid", bool reverse=false, string filter=""){ running.store(true); int pid; uint64_t cpu_t, rss_mem; double cpu, cpu_s; size_t threads; ifstream pread; string pid_str, name, cmd, attr, user, instr, uid, status, tmpstr, smap; auto since_last = time_ms() - tstamp; if (since_last < 1) since_last = 1; auto uptime = system_uptime(); auto sortint = (sorts.contains(sorting)) ? sorts[sorting] : 5; vector pstat; //? Return type! Values in tuple: pid, program, command, threads, username, mem KiB, cpu%, cpu cumulative vector> procs; //* Update uid_user map if /etc/passwd changed since last run if (!passwd_path.empty() && fs::last_write_time(passwd_path) != passwd_time) { string r_uid, r_user; passwd_time = fs::last_write_time(passwd_path); uid_user.clear(); ifstream pread(passwd_path); if (pread.good()) { while (true){ getline(pread, r_user, ':'); pread.ignore(numeric_limits::max(), ':'); getline(pread, r_uid, ':'); uid_user[r_uid] = r_user; pread.ignore(numeric_limits::max(), '\n'); if (pread.eof()) break; } } pread.close(); } //* Iterate over all pid directories in /proc and get relevant values for (auto& d: fs::directory_iterator(Global::proc_path)){ if (stop.load()) { procs.clear(); running.store(false); stop.store(false); return procs; } pid_str = fs::path(d.path()).filename(); cpu = 0.0; rss_mem = 0; if (d.is_directory() && isdigit(pid_str[0])) { pid = stoi(pid_str); //* Get cpu usage, threads and rss mem from [pid]/stat if (fs::exists((string)d.path() + "/stat")) { pread.clear(); pstat.clear(); ifstream pread((string)d.path() + "/stat"); if (pread.good()) while (getline(pread, instr, ' ')) pstat.push_back(instr); pread.close(); if (pstat.size() < 37) continue; //? Process number of threads threads = stoul(pstat[19]); //? Process utime + stime cpu_t = stoull(pstat[13]) + stoull(pstat[14]); if (!cpu_times.contains(pid)) cpu_times[pid] = cpu_t; //? Cache process start time if (!cpu_second.contains(pid)) cpu_second[pid] = stoull(pstat[21]); //? Get RSS memory in KiB (will be overriden by /status if available) rss_mem = (stoull(pstat[23]) * page_size) >> 10; //? Process cpu usage since last update, 100'000 because (100 percent * 1000 milliseconds) for correct conversion cpu = static_cast(100000 * (cpu_t - cpu_times[pid]) / since_last) / clk_tck; //? Process cumulative cpu usage since process start cpu_s = static_cast((cpu_t / clk_tck) / (uptime - (cpu_second[pid] / clk_tck))); cpu_times[pid] = cpu_t; } //* Get RSS memory in KiB if (fs::exists((string)d.path() + "/status")) { pread.clear(); status.clear(); tmpstr.clear(); ifstream pread((string)d.path() + "/status"); if (pread.good()) { while (getline(pread, status, ':')){ if (status == "VmRSS") { pread.ignore(); pread >> ws; getline(pread, tmpstr, 'k'); tmpstr.pop_back(); break; } else pread.ignore(numeric_limits::max(), '\n'); } } pread.close(); if (!tmpstr.empty()) rss_mem = stoull(tmpstr); } //* Cache program name, command and username if (!cache.contains(pid)) { if (fs::exists((string)d.path() + "/comm")) { pread.clear(); name.clear(); ifstream pread((string)d.path() + "/comm"); if (pread.good()) getline(pread, name); pread.close(); } if (fs::exists((string)d.path() + "/cmdline")) { pread.clear(); cmd.clear(); tmpstr.clear(); ifstream pread((string)d.path() + "/cmdline"); if (pread.good()) while(getline(pread, tmpstr, '\0')) cmd += tmpstr + " "; pread.close(); if (!cmd.empty()) cmd.pop_back(); } if (fs::exists((string)d.path() + "/status")) { pread.clear(); status.clear(); uid.clear(); ifstream pread((string)d.path() + "/status"); if (pread.good()) { while (!pread.eof()){ getline(pread, status, ':'); if (status == "Uid") { pread.ignore(); getline(pread, uid, '\t'); break; } else { pread.ignore(numeric_limits::max(), '\n'); } } } pread.close(); user = (!uid.empty() && uid_user.contains(uid)) ? uid_user.at(uid) : uid; } cache[pid] = make_tuple(name, cmd, user); } // //* Match filter if applicable if (!filter.empty() && pid_str.find(filter) == string::npos && //? Pid get<0>(cache[pid]).find(filter) == string::npos && //? Program get<1>(cache[pid]).find(filter) == string::npos && //? Command get<2>(cache[pid]).find(filter) == string::npos //? User ) continue; //* Create tuple procs.push_back(make_tuple(pid, get<0>(cache[pid]), get<1>(cache[pid]), threads, get<2>(cache[pid]), rss_mem, cpu, cpu_s)); } } // auto st = time_ms(); //* Sort processes vector ranges::sort(procs, [&sortint, &reverse]( tuple& a, tuple& b) { switch (sortint) { case 0: return (reverse) ? get<0>(a) < get<0>(b) : get<0>(a) > get<0>(b); //? Pid case 1: return (reverse) ? get<1>(a) < get<1>(b) : get<1>(a) > get<1>(b); //? Program case 2: return (reverse) ? get<2>(a) < get<2>(b) : get<2>(a) > get<2>(b); //? Command case 3: return (reverse) ? get<3>(a) < get<3>(b) : get<3>(a) > get<3>(b); //? Threads case 4: return (reverse) ? get<4>(a) < get<4>(b) : get<4>(a) > get<4>(b); //? User case 5: return (reverse) ? get<5>(a) < get<5>(b) : get<5>(a) > get<5>(b); //? Memory case 6: return (reverse) ? get<6>(a) < get<6>(b) : get<6>(a) > get<6>(b); //? Cpu direct case 7: return (reverse) ? get<7>(a) < get<7>(b) : get<7>(a) > get<7>(b); //? Cpu lazy } return false; } ); //* When using "cpu lazy" sorting push processes with high cpu usage to the front regardless of cumulative usage if (sortint == 6 && !reverse) { double max = 10.0, target = 30.0; for (size_t i = 0, offset = 0; i < procs.size(); i++) { if (i <= 5 && get<6>(procs[i]) > max) max = get<6>(procs[i]); else if (i == 6) target = (max > 30.0) ? max : 10.0; if (i == offset && get<6>(procs[i]) > 30.0) offset++; else if (get<6>(procs[i]) > target) rotate(procs.begin() + offset, procs.begin() + i, procs.begin() + i + 1); } } //* Clear all cached values at a regular interval to get rid of dead processes if (++counter >= 10000 || (filter.empty() && cache.size() > procs.size() + 100)) { counter = 0; cache.clear(); cpu_times.clear(); cpu_second.clear(); } tstamp = time_ms(); running.store(false); return procs; } Processes() { clk_tck = sysconf(_SC_CLK_TCK); tstamp = time_ms(); stop.store(false); passwd_path = (fs::exists(fs::path("/etc/passwd"))) ? fs::path("/etc/passwd") : passwd_path; collect(); } }; #endif