/* Copyright 2021 Aristocratos (jakob@qvantnet.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. indent = tab tab-size = 4 */ #ifndef _btop_linux_included_ #define _btop_linux_included_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using std::string, std::vector, std::array, std::ifstream, std::atomic, std::numeric_limits, std::streamsize; using std::cout, std::flush, std::endl; namespace fs = std::filesystem; using namespace Tools; const auto SSmax = std::numeric_limits::max(); //? --------------------------------------------------- FUNCTIONS ----------------------------------------------------- namespace Tools { double system_uptime(){ string upstr; ifstream pread("/proc/uptime"); getline(pread, upstr, ' '); pread.close(); return stod(upstr); } } namespace Proc { namespace { struct p_cache { string name, cmd, user; uint64_t cpu_t = 0, cpu_s = 0; }; unordered_flat_map cache; unordered_flat_map uid_user; fs::path passwd_path; fs::file_time_type passwd_time; uint counter = 0; long page_size; long clk_tck; } fs::path proc_path; uint64_t old_cputimes = 0; size_t numpids = 500; atomic stop (false); atomic collecting (false); atomic drawing (false); array sort_array = { "pid", "name", "command", "threads", "user", "memory", "cpu direct", "cpu lazy", }; unordered_flat_map sort_map; //* proc_info: pid, name, cmd, threads, user, mem, cpu_p, cpu_c, state, cpu_n, p_nice, ppid struct proc_info { uint pid; string name = "", cmd = ""; size_t threads = 0; string user = ""; uint64_t mem = 0; double cpu_p = 0.0, cpu_c = 0.0; char state = '0'; int cpu_n = 0, p_nice = 0; uint ppid = 0; }; vector current_procs; //* Collects process information from /proc, saves to and returns reference to Proc::current_procs; auto& collect(string sorting="pid", bool reverse=false, string filter="", bool per_core=true){ atomic_wait_set(collecting); ifstream pread; auto uptime = system_uptime(); vector procs; procs.reserve((numpids + 10)); int npids = 0; int cmult = (per_core) ? Global::coreCount : 1; //* Update uid_user map if /etc/passwd changed since last run if (!passwd_path.empty() && fs::last_write_time(passwd_path) != passwd_time) { string r_uid, r_user; passwd_time = fs::last_write_time(passwd_path); uid_user.clear(); pread.open(passwd_path); if (pread.good()) { while (!pread.eof()){ getline(pread, r_user, ':'); pread.ignore(SSmax, ':'); getline(pread, r_uid, ':'); uid_user[r_uid] = r_user; pread.ignore(SSmax, '\n'); } } pread.close(); } //* Get cpu total times from /proc/stat uint64_t cputimes = 0; pread.open(proc_path / "stat"); if (pread.good()) { pread.ignore(SSmax, ' '); for (uint64_t times; pread >> times; cputimes += times); pread.close(); } else return current_procs; //* Iterate over all pids in /proc for (auto& d: fs::directory_iterator(proc_path)){ if (pread.is_open()) pread.close(); if (stop.load()) { collecting.store(false); stop.store(false); return current_procs; } bool new_cache = false; string pid_str = d.path().filename(); if (d.is_directory() && isdigit(pid_str[0])) { npids++; proc_info new_proc (stoul(pid_str)); //* Cache program name, command and username if (!cache.contains(new_proc.pid)) { string name, cmd, user; new_cache = true; pread.open(d.path() / "comm"); if (pread.good()) { getline(pread, name); pread.close(); } else continue; pread.open(d.path() / "cmdline"); if (pread.good()) { string tmpstr = ""; while(getline(pread, tmpstr, '\0')) cmd += tmpstr + " "; pread.close(); if (!cmd.empty()) cmd.pop_back(); } else continue; pread.open(d.path() / "status"); if (pread.good()) { string uid; while (!pread.eof()){ string line; getline(pread, line, ':'); if (line == "Uid") { pread.ignore(); getline(pread, uid, '\t'); break; } else { pread.ignore(SSmax, '\n'); } } pread.close(); user = (!uid.empty() && uid_user.contains(uid)) ? uid_user.at(uid) : uid; } else continue; cache[new_proc.pid] = {name, cmd, user}; } //* Match filter if defined if (!filter.empty() && pid_str.find(filter) == string::npos && cache[new_proc.pid].name.find(filter) == string::npos && cache[new_proc.pid].cmd.find(filter) == string::npos && cache[new_proc.pid].user.find(filter) == string::npos) { if (new_cache) cache.erase(new_proc.pid); continue; } new_proc.name = cache[new_proc.pid].name; new_proc.cmd = cache[new_proc.pid].cmd; new_proc.user = cache[new_proc.pid].user; //* Parse /proc/[pid]/stat pread.open(d.path() / "stat"); if (pread.good()) { string instr; getline(pread, instr); pread.close(); size_t s_pos = 0, c_pos = 0, s_count = 0; uint64_t cpu_t = 0; //? Skip pid and comm field and find comm fields closing ')' s_pos = instr.find_last_of(')') + 2; if (s_pos == string::npos) continue; do { c_pos = instr.find(' ', s_pos); if (c_pos == string::npos) break; switch (s_count) { case 0: { //? Process state new_proc.state = instr[s_pos]; break; } case 1: { //? Process parent pid new_proc.ppid = stoul(instr.substr(s_pos, c_pos - s_pos)); break; } case 11: { //? Process utime cpu_t = stoull(instr.substr(s_pos, c_pos - s_pos)); break; } case 12: { //? Process stime cpu_t += stoull(instr.substr(s_pos, c_pos - s_pos)); break; } case 16: { //? Process nice value new_proc.p_nice = stoi(instr.substr(s_pos, c_pos - s_pos)); break; } case 17: { //? Process number of threads new_proc.threads = stoul(instr.substr(s_pos, c_pos - s_pos)); break; } case 19: { //? Cache cpu seconds if (new_cache) cache[new_proc.pid].cpu_s = stoull(instr.substr(s_pos, c_pos - s_pos)); break; } case 36: { //? CPU number last executed on new_proc.cpu_n = stoi(instr.substr(s_pos, c_pos - s_pos)); break; } } s_pos = c_pos + 1; } while (s_count++ < 36); if (s_count < 19) continue; //? Process cpu usage since last update new_proc.cpu_p = round(cmult * 1000 * (cpu_t - cache[new_proc.pid].cpu_t) / (cputimes - old_cputimes)) / 10.0; //? Process cumulative cpu usage since process start new_proc.cpu_c = ((double)cpu_t / clk_tck) / (uptime - (cache[new_proc.pid].cpu_s / clk_tck)); //? Update cache with latest cpu times cache[new_proc.pid].cpu_t = cpu_t; } else continue; //* Get RSS memory in bytes from /proc/[pid]/statm pread.open(d.path() / "statm"); if (pread.good()) { pread.ignore(SSmax, ' '); pread >> new_proc.mem; pread.close(); new_proc.mem *= page_size; } //* Create proc_info procs.push_back(new_proc); } } //* Sort processes vector std::ranges::sort(procs, [sortint = sort_map.at(sorting), &reverse](proc_info& a, proc_info& b) { switch (sortint) { case 0: return (reverse) ? a.pid < b.pid : a.pid > b.pid; case 1: return (reverse) ? a.name < b.name : a.name > b.name; case 2: return (reverse) ? a.cmd < b.cmd : a.cmd > b.cmd; case 3: return (reverse) ? a.threads < b.threads : a.threads > b.threads; case 4: return (reverse) ? a.user < b.user : a.user > b.user; case 5: return (reverse) ? a.mem < b.mem : a.mem > b.mem; case 6: return (reverse) ? a.cpu_p < b.cpu_p : a.cpu_p > b.cpu_p; case 7: return (reverse) ? a.cpu_c < b.cpu_c : a.cpu_c > b.cpu_c; } return false; } ); //* When using "cpu lazy" sorting push processes with high cpu usage to the front regardless of cumulative usage if (sorting == "cpu lazy" && !reverse) { double max = 10.0, target = 30.0; for (size_t i = 0, offset = 0; i < procs.size(); i++) { if (i <= 5 && procs[i].cpu_p > max) max = procs[i].cpu_p; else if (i == 6) target = (max > 30.0) ? max : 10.0; if (i == offset && procs[i].cpu_p > 30.0) offset++; else if (procs[i].cpu_p > target) rotate(procs.begin() + offset, procs.begin() + i, procs.begin() + i + 1); } } //* Clear dead processes from cache at a regular interval if (++counter >= 10000 || ((int)cache.size() > npids + 100)) { unordered_flat_map r_cache; r_cache.reserve(procs.size()); counter = 0; if (filter.empty()) { for (auto& p : procs) r_cache[p.pid] = cache[p.pid]; cache.swap(r_cache); } else cache.clear(); } old_cputimes = cputimes; atomic_wait(drawing); current_procs.swap(procs); numpids = npids; collecting.store(false); return current_procs; } //* Initialize needed variables for collect void init(){ proc_path = (fs::is_directory(fs::path("/proc")) && access("/proc", R_OK) != -1) ? "/proc" : ""; if (proc_path.empty()) { string errmsg = "Proc filesystem not found or no permission to read from it!"; Logger::error(errmsg); cout << "ERROR: " << errmsg << endl; exit(1); } passwd_path = (access("/etc/passwd", R_OK) != -1) ? fs::path("/etc/passwd") : passwd_path; if (passwd_path.empty()) Logger::warning("Could not read /etc/passwd, will show UID instead of username."); page_size = sysconf(_SC_PAGE_SIZE); if (page_size <= 0) { page_size = 4096; Logger::warning("Could not get system page size. Defaulting to 4096, processes memory usage might be incorrect."); } clk_tck = sysconf(_SC_CLK_TCK); if (clk_tck <= 0) { clk_tck = 100; Logger::warning("Could not get system clocks per second. Defaulting to 100, processes cpu usage might be incorrect."); } uint i = 0; for (auto& item : sort_array) sort_map[item] = i++; } } #endif