/* Copyright 2021 Aristocratos (jakob@qvantnet.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. indent = tab tab-size = 4 */ #ifndef _btop_linux_included_ #define _btop_linux_included_ 1 #include #include #include #include #include #include #include #include #include #include #include #include namespace fs = std::filesystem; using namespace std; namespace Global { const string System = "linux"; filesystem::path proc_path; } //? --------------------------------------------------- FUNCTIONS ----------------------------------------------------- double system_uptime(){ string upstr; ifstream pread("/proc/uptime"); getline(pread, upstr, ' '); pread.close(); return stod(upstr); } //? ------------------------------------------------- NAMESPACES ------------------------------------------------------ namespace Proc { namespace { uint64_t tstamp; long int clk_tck; struct p_cache { string name, cmd, user; uint64_t cpu_t = 0, cpu_s = 0; }; map cache; map uid_user; fs::path passwd_path; fs::file_time_type passwd_time; uint counter = 0; long page_size = sysconf(_SC_PAGE_SIZE); } atomic stop (false); atomic running (false); vector sort_vector = { "pid", "name", "command", "threads", "user", "memory", "cpu direct", "cpu lazy", }; map sort_map; //* proc_info: pid, name, cmd, threads, user, mem, cpu_p, cpu_c struct proc_info { uint pid; string name, cmd; size_t threads; string user; uint64_t mem; double cpu_p, cpu_c; }; //* Collects process information from /proc and returns a vector of proc_info structs auto collect(string sorting="pid", bool reverse=false, string filter=""){ running.store(true); uint pid; uint64_t cpu_t, rss_mem; double cpu, cpu_s; bool new_cache; size_t threads; ifstream pread; string pid_str, name, cmd, attr, user, instr, uid, status, tmpstr; auto since_last = time_ms() - tstamp; if (since_last < 1) since_last = 1; auto uptime = system_uptime(); auto sortint = (sort_map.contains(sorting)) ? sort_map[sorting] : 7; vector pstat; vector procs; vector c_pids; //* Update uid_user map if /etc/passwd changed since last run if (!passwd_path.empty() && fs::last_write_time(passwd_path) != passwd_time) { string r_uid, r_user; passwd_time = fs::last_write_time(passwd_path); uid_user.clear(); ifstream pread(passwd_path); if (pread.good()) { while (true){ getline(pread, r_user, ':'); pread.ignore(numeric_limits::max(), ':'); getline(pread, r_uid, ':'); uid_user[r_uid] = r_user; pread.ignore(numeric_limits::max(), '\n'); if (pread.eof()) break; } } pread.close(); } //* Iterate over all pids in /proc and get relevant values for (auto& d: fs::directory_iterator(Global::proc_path)){ if (stop.load()) { procs.clear(); running.store(false); stop.store(false); return procs; } pid_str = fs::path(d.path()).filename(); cpu = 0.0; rss_mem = 0; new_cache = false; if (d.is_directory() && isdigit(pid_str[0])) { pid = stoul(pid_str); c_pids.push_back(pid); //* Cache program name, command and username if (!cache.contains(pid)) { name.clear(); cmd.clear(); user.clear(); new_cache = true; if (fs::exists((string)d.path() + "/comm")) { pread.clear(); name.clear(); ifstream pread((string)d.path() + "/comm"); if (pread.good()) getline(pread, name); pread.close(); } if (fs::exists((string)d.path() + "/cmdline")) { pread.clear(); cmd.clear(); tmpstr.clear(); ifstream pread((string)d.path() + "/cmdline"); if (pread.good()) while(getline(pread, tmpstr, '\0')) cmd += tmpstr + " "; pread.close(); if (!cmd.empty()) cmd.pop_back(); } if (fs::exists((string)d.path() + "/status")) { pread.clear(); status.clear(); uid.clear(); ifstream pread((string)d.path() + "/status"); if (pread.good()) { while (!pread.eof()){ getline(pread, status, ':'); if (status == "Uid") { pread.ignore(); getline(pread, uid, '\t'); break; } else { pread.ignore(numeric_limits::max(), '\n'); } } } pread.close(); user = (!uid.empty() && uid_user.contains(uid)) ? uid_user.at(uid) : uid; } cache[pid] = p_cache(name, cmd, user); } //* Get cpu usage, cpu cumulative and threads from /proc/[pid]/stat if (fs::exists((string)d.path() + "/stat")) { pread.clear(); pstat.clear(); ifstream pread((string)d.path() + "/stat"); if (pread.good()) while (getline(pread, instr, ' ')) pstat.push_back(instr); pread.close(); if (pstat.size() < 37) continue; //? Process number of threads threads = stoul(pstat[19]); //? Process utime + stime cpu_t = stoull(pstat[13]) + stoull(pstat[14]); //? Cache cpu times and cpu seconds if (new_cache) { cache[pid].cpu_t = cpu_t; cache[pid].cpu_s = stoull(pstat[21]); } //? Cache process start time // if (!cpu_second.contains(pid)) cpu_second[pid] = stoull(pstat[21]); //? Process cpu usage since last update, 100'000 because (100 percent * 1000 milliseconds) for correct conversion cpu = static_cast(100000 * (cpu_t - cache[pid].cpu_t) / since_last) / clk_tck; //? Process cumulative cpu usage since process start cpu_s = static_cast((cpu_t / clk_tck) / (uptime - (cache[pid].cpu_s / clk_tck))); //? Add latest cpu times to cache cache[pid].cpu_t = cpu_t; } //* Get RSS memory in bytes from /proc/[pid]/statm if (fs::exists((string)d.path() + "/statm")) { pread.clear(); tmpstr.clear(); ifstream pread((string)d.path() + "/statm"); if (pread.good()) { pread.ignore(numeric_limits::max(), ' '); pread >> rss_mem; rss_mem *= page_size; } pread.close(); } // //* Match filter if applicable if (!filter.empty() && pid_str.find(filter) == string::npos && //? Pid cache[pid].name.find(filter) == string::npos && //? Program cache[pid].cmd.find(filter) == string::npos && //? Command cache[pid].user.find(filter) == string::npos //? User ) continue; //* Create proc_info procs.push_back(proc_info(pid, cache[pid].name, cache[pid].cmd, threads, cache[pid].user, rss_mem, cpu, cpu_s)); } } // auto st = time_ms(); //* Sort processes vector ranges::sort(procs, [&sortint, &reverse](proc_info& a, proc_info& b) { switch (sortint) { case 0: return (reverse) ? a.pid < b.pid : a.pid > b.pid; case 1: return (reverse) ? a.name < b.name : a.name > b.name; case 2: return (reverse) ? a.cmd < b.cmd : a.cmd > b.cmd; case 3: return (reverse) ? a.threads < b.threads : a.threads > b.threads; case 4: return (reverse) ? a.user < b.user : a.user > b.user; case 5: return (reverse) ? a.mem < b.mem : a.mem > b.mem; case 6: return (reverse) ? a.cpu_p < b.cpu_p : a.cpu_p > b.cpu_p; case 7: return (reverse) ? a.cpu_c < b.cpu_c : a.cpu_c > b.cpu_c; } return false; } ); //* When using "cpu lazy" sorting push processes with high cpu usage to the front regardless of cumulative usage if (sortint == 7 && !reverse) { double max = 10.0, target = 30.0; for (size_t i = 0, offset = 0; i < procs.size(); i++) { if (i <= 5 && procs[i].cpu_p > max) max = procs[i].cpu_p; else if (i == 6) target = (max > 30.0) ? max : 10.0; if (i == offset && procs[i].cpu_p > 30.0) offset++; else if (procs[i].cpu_p > target) rotate(procs.begin() + offset, procs.begin() + i, procs.begin() + i + 1); } } //* Clear all cached values at a regular interval to get rid of dead processes if (++counter >= 5 || (filter.empty() && cache.size() > procs.size() + 100)) { map r_cache; counter = 0; for (auto& p : c_pids){ r_cache[p] = cache[p]; } cache = move(r_cache); } tstamp = time_ms(); running.store(false); return procs; } //* Initialize needed variables for collect void init(){ clk_tck = sysconf(_SC_CLK_TCK); tstamp = time_ms(); passwd_path = (fs::exists(fs::path("/etc/passwd"))) ? fs::path("/etc/passwd") : passwd_path; uint i = 0; for (auto& item : sort_vector) sort_map[item] = i++; } }; #endif