/* Copyright 2021 Aristocratos (jakob@qvantnet.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. indent = tab tab-size = 4 */ #if defined(__linux__) #include #include #include #include #include #include #include #include #include #include #include #include #include using std::string, std::vector, std::ifstream, std::atomic, std::numeric_limits, std::streamsize, std::round, std::max, std::min, std::clamp, std::string_literals::operator""s, std::cmp_equal, std::cmp_less, std::cmp_greater; namespace fs = std::filesystem; namespace rng = std::ranges; using namespace Tools; //? --------------------------------------------------- FUNCTIONS ----------------------------------------------------- namespace Cpu { vector core_old_totals; vector core_old_idles; vector available_fields; cpu_info current_cpu; fs::path freq_path = "/sys/devices/system/cpu/cpufreq/policy0/scaling_cur_freq"; bool got_sensors = false, cpu_temp_only = false; //* Populate found_sensors map bool get_sensors(); //* Get current cpu clock speed string get_cpuHz(); //* Search /proc/cpuinfo for a cpu name string get_cpuName(); //* Parse /proc/cpu info for mapping of core ids auto get_core_mapping() -> unordered_flat_map; struct Sensor { fs::path path; string label; int64_t temp = 0; int64_t high = 0; int64_t crit = 0; }; unordered_flat_map found_sensors; string cpu_sensor; vector core_sensors; unordered_flat_map core_mapping; } namespace Shared { fs::path procPath, passwd_path; uint64_t totalMem; long pageSize, clkTck, coreCount; void init() { //? Shared global variables init procPath = (fs::is_directory(fs::path("/proc")) and access("/proc", R_OK) != -1) ? "/proc" : ""; if (procPath.empty()) throw std::runtime_error("Proc filesystem not found or no permission to read from it!"); passwd_path = (fs::is_regular_file(fs::path("/etc/passwd")) and access("/etc/passwd", R_OK) != -1) ? "/etc/passwd" : ""; if (passwd_path.empty()) Logger::warning("Could not read /etc/passwd, will show UID instead of username."); coreCount = sysconf(_SC_NPROCESSORS_ONLN); if (coreCount < 1) { coreCount = 1; Logger::warning("Could not determine number of cores, defaulting to 1."); } pageSize = sysconf(_SC_PAGE_SIZE); if (pageSize <= 0) { pageSize = 4096; Logger::warning("Could not get system page size. Defaulting to 4096, processes memory usage might be incorrect."); } clkTck = sysconf(_SC_CLK_TCK); if (clkTck <= 0) { clkTck = 100; Logger::warning("Could not get system clock ticks per second. Defaulting to 100, processes cpu usage might be incorrect."); } ifstream meminfo(Shared::procPath / "meminfo"); if (meminfo.good()) { meminfo.ignore(SSmax, ':'); meminfo >> totalMem; totalMem <<= 10; } if (not meminfo.good() or totalMem == 0) throw std::runtime_error("Could not get total memory size from /proc/meminfo"); //? Init for namespace Cpu if (not fs::exists(Cpu::freq_path) or access(Cpu::freq_path.c_str(), R_OK) == -1) Cpu::freq_path.clear(); Cpu::current_cpu.core_percent.insert(Cpu::current_cpu.core_percent.begin(), Shared::coreCount, {}); Cpu::current_cpu.temp.insert(Cpu::current_cpu.temp.begin(), Shared::coreCount + 1, {}); Cpu::core_old_totals.insert(Cpu::core_old_totals.begin(), Shared::coreCount, 0); Cpu::core_old_idles.insert(Cpu::core_old_idles.begin(), Shared::coreCount, 0); Cpu::collect(); for (auto& [field, vec] : Cpu::current_cpu.cpu_percent) { if (not vec.empty()) Cpu::available_fields.push_back(field); } Cpu::cpuName = Cpu::get_cpuName(); Cpu::got_sensors = Cpu::get_sensors(); Cpu::core_mapping = Cpu::get_core_mapping(); //? Init for namespace Mem Mem::collect(); //? Init for namespace Net Net::collect(); } } namespace Cpu { string cpuName; string cpuHz; const array time_names = {"user", "nice", "system", "idle", "iowait", "irq", "softirq", "steal", "guest", "guest_nice"}; unordered_flat_map cpu_old = { {"totals", 0}, {"idles", 0}, {"user", 0}, {"nice", 0}, {"system", 0}, {"idle", 0}, {"iowait", 0}, {"irq", 0}, {"softirq", 0}, {"steal", 0}, {"guest", 0}, {"guest_nice", 0} }; string get_cpuName() { string name; ifstream cpuinfo(Shared::procPath / "cpuinfo"); if (cpuinfo.good()) { for (string instr; getline(cpuinfo, instr, ':') and not instr.starts_with("model name");) cpuinfo.ignore(SSmax, '\n'); if (cpuinfo.bad()) return name; cpuinfo.ignore(1); getline(cpuinfo, name); auto name_vec = ssplit(name); if ((s_contains(name, "Xeon"s) or v_contains(name_vec, "Duo"s)) and v_contains(name_vec, "CPU"s)) { auto cpu_pos = v_index(name_vec, "CPU"s); if (cpu_pos < name_vec.size() - 1 and not name_vec.at(cpu_pos + 1).ends_with(')')) name = name_vec.at(cpu_pos + 1); else name.clear(); } else if (v_contains(name_vec, "Ryzen"s)) { auto ryz_pos = v_index(name_vec, "Ryzen"s); name = "Ryzen" + (ryz_pos < name_vec.size() - 1 ? ' ' + name_vec.at(ryz_pos + 1) : "") + (ryz_pos < name_vec.size() - 2 ? ' ' + name_vec.at(ryz_pos + 2) : ""); } else if (s_contains(name, "Intel"s) and v_contains(name_vec, "CPU"s)) { auto cpu_pos = v_index(name_vec, "CPU"s); if (cpu_pos < name_vec.size() - 1 and not name_vec.at(cpu_pos + 1).ends_with(')') and name_vec.at(cpu_pos + 1) != "@") name = name_vec.at(cpu_pos + 1); else name.clear(); } else name.clear(); if (name.empty() and not name_vec.empty()) { for (const auto& n : name_vec) { if (n == "@") break; name += n + ' '; } name.pop_back(); for (const auto& reg : {regex("Processor"), regex("CPU"), regex("\\(R\\)"), regex("\\(TM\\)"), regex("Intel"), regex("AMD"), regex("Core"), regex("\\d?\\.?\\d+[mMgG][hH][zZ]")}) { name = std::regex_replace(name, reg, ""); } name = trim(name); } } return name; } bool get_sensors() { bool got_cpu = false, got_coretemp = false; vector search_paths; try { //? Setup up paths to search for sensors if (fs::exists(fs::path("/sys/class/hwmon")) and access("/sys/class/hwmon", R_OK) != -1) { for (const auto& dir : fs::directory_iterator(fs::path("/sys/class/hwmon"))) { fs::path add_path = fs::canonical(dir.path()); if (v_contains(search_paths, add_path) or v_contains(search_paths, add_path / "device")) continue; if (s_contains(add_path, "coretemp")) got_coretemp = true; if (fs::exists(add_path / "temp1_input")) { search_paths.push_back(add_path); } else if (fs::exists(add_path / "device/temp1_input")) search_paths.push_back(add_path / "device"); } } if (not got_coretemp and fs::exists(fs::path("/sys/devices/platform/coretemp.0/hwmon"))) { for (auto& d : fs::directory_iterator(fs::path("/sys/devices/platform/coretemp.0/hwmon"))) { fs::path add_path = fs::canonical(d.path()); if (fs::exists(d.path() / "temp1_input") and not v_contains(search_paths, add_path)) { search_paths.push_back(add_path); got_coretemp = true; } } } //? Scan any found directories for temperature sensors if (not search_paths.empty()) { for (const auto& path : search_paths) { const string pname = readfile(path / "name", path.filename()); for (int i = 1; fs::exists(path / string("temp" + to_string(i) + "_input")); i++) { const string basepath = path / string("temp" + to_string(i) + "_"); const string label = readfile(fs::path(basepath + "label"), "temp" + to_string(i)); const string sensor_name = pname + "/" + label; const int64_t temp = stol(readfile(fs::path(basepath + "input"), "0")) / 1000; const int64_t high = stol(readfile(fs::path(basepath + "max"), "80000")) / 1000; const int64_t crit = stol(readfile(fs::path(basepath + "crit"), "95000")) / 1000; found_sensors[sensor_name] = {fs::path(basepath + "input"), label, temp, high, crit}; if (not got_cpu and (label.starts_with("Package id") or label.starts_with("Tdie"))) { got_cpu = true; cpu_sensor = sensor_name; } else if (label.starts_with("Core") or label.starts_with("Tccd")) { got_coretemp = true; if (not v_contains(core_sensors, sensor_name)) core_sensors.push_back(sensor_name); } } } } //? If no good candidate for cpu temp has been found scan /sys/class/thermal if (not got_cpu and fs::exists(fs::path("/sys/class/thermal"))) { const string rootpath = fs::path("/sys/class/thermal/thermal_zone"); for (int i = 0; fs::exists(fs::path(rootpath + to_string(i))); i++) { const fs::path basepath = rootpath + to_string(i); if (not fs::exists(basepath / "temp")) continue; const string label = readfile(basepath / "type", "temp" + to_string(i)); const string sensor_name = "thermal" + to_string(i) + "/" + label; const int64_t temp = stol(readfile(basepath / "temp", "0")) / 1000; int64_t high, crit; for (int ii = 0; fs::exists(basepath / string("trip_point_" + to_string(ii) + "_temp")); ii++) { const string trip_type = readfile(basepath / string("trip_point_" + to_string(ii) + "_type")); if (not is_in(trip_type, "high", "critical")) continue; auto& val = (trip_type == "high" ? high : crit); val = stol(readfile(basepath / string("trip_point_" + to_string(ii) + "_temp"), "0")) / 1000; } if (high < 1) high = 80; if (crit < 1) crit = 95; found_sensors[sensor_name] = {basepath / "temp", label, temp, high, crit}; } } } catch (...) {} if (not got_coretemp) cpu_temp_only = true; if (cpu_sensor.empty() and not found_sensors.empty()) { for (const auto& [name, sensor] : found_sensors) { if (s_contains(str_to_lower(name), "cpu")) { cpu_sensor = name; break; } } if (cpu_sensor.empty()) { cpu_sensor = found_sensors.begin()->first; Logger::warning("No good candidate for cpu sensor found, using random from all found sensors."); } } return not found_sensors.empty(); } void update_sensors() { if (cpu_sensor.empty()) return; const auto& cpu_sensor = (not Config::getS("cpu_sensor").empty() and found_sensors.contains(Config::getS("cpu_sensor")) ? Config::getS("cpu_sensor") : Cpu::cpu_sensor); found_sensors.at(cpu_sensor).temp = stol(readfile(found_sensors.at(cpu_sensor).path, "0")) / 1000; current_cpu.temp.at(0).push_back(found_sensors.at(cpu_sensor).temp); current_cpu.temp_max = found_sensors.at(cpu_sensor).crit; if (current_cpu.temp.at(0).size() > 20) current_cpu.temp.at(0).pop_front(); if (Config::getB("show_coretemp") and not cpu_temp_only) { vector done; for (const auto& sensor : core_sensors) { if (v_contains(done, sensor)) continue; found_sensors.at(sensor).temp = stol(readfile(found_sensors.at(sensor).path, "0")) / 1000; done.push_back(sensor); } for (const auto& [core, temp] : core_mapping) { if (cmp_less(core + 1, current_cpu.temp.size()) and cmp_less(temp, core_sensors.size())) { current_cpu.temp.at(core + 1).push_back(found_sensors.at(core_sensors.at(temp)).temp); if (current_cpu.temp.at(core + 1).size() > 20) current_cpu.temp.at(core + 1).pop_front(); } } } } string get_cpuHz() { static int failed = 0; if (failed > 4) return ""s; string cpuhz; try { double hz = 0.0; //? Try to get freq from /sys/devices/system/cpu/cpufreq/policy first (faster) if (not freq_path.empty()) { hz = stod(readfile(freq_path, "0.0")) / 1000; if (hz <= 0.0 and ++failed >= 2) freq_path.clear(); } //? If freq from /sys failed or is missing try to use /proc/cpuinfo if (hz <= 0.0) { ifstream cpufreq(Shared::procPath / "cpuinfo"); if (cpufreq.good()) { while (cpufreq.ignore(SSmax, '\n')) { if (cpufreq.peek() == 'c') { cpufreq.ignore(SSmax, ' '); if (cpufreq.peek() == 'M') { cpufreq.ignore(SSmax, ':'); cpufreq.ignore(1); cpufreq >> hz; break; } } } } } if (hz <= 1 or hz >= 1000000) throw std::runtime_error("Failed to read /sys/devices/system/cpu/cpufreq/policy and /proc/cpuinfo."); if (hz >= 1000) { if (hz >= 10000) cpuhz = to_string((int)round(hz / 1000)); // Future proof until we reach THz speeds :) else cpuhz = to_string(round(hz / 100) / 10.0).substr(0, 3); cpuhz += " GHz"; } else if (hz > 0) cpuhz = to_string((int)round(hz)) + " MHz"; } catch (const std::exception& e) { if (++failed < 5) return ""s; else { Logger::warning("get_cpuHZ() : " + (string)e.what()); return ""s; } } return cpuhz; } auto get_core_mapping() -> unordered_flat_map { unordered_flat_map core_map; //? Try to get core mapping from /proc/cpuinfo ifstream cpuinfo(Shared::procPath / "cpuinfo"); if (cpuinfo.good()) { int cpu, core; for (string instr; cpuinfo >> instr;) { if (instr == "processor") { cpuinfo.ignore(SSmax, ':'); cpuinfo >> cpu; } else if (instr.starts_with("core")) { cpuinfo.ignore(SSmax, ':'); cpuinfo >> core; core_map[cpu] = core; } cpuinfo.ignore(SSmax, '\n'); } } //? If core mapping from cpuinfo was incomplete try to guess remainder, if missing completely map 0-0 1-1 2-2 etc. if (cmp_less(core_map.size(), Shared::coreCount)) { if (Shared::coreCount % 2 == 0 and (long)core_map.size() == Shared::coreCount / 2) { for (int i = 0; i < Shared::coreCount / 2; i++) core_map[Shared::coreCount / 2 + i] = i; } else { core_map.clear(); for (int i = 0; i < Shared::coreCount; i++) core_map[i] = i; } } //? Apply user set custom mapping if any const auto& custom_map = Config::getS("cpu_core_map"); if (not custom_map.empty()) { try { for (const auto& split : ssplit(custom_map)) { const auto vals = ssplit(split, ':'); if (vals.size() != 2) continue; int change_id = std::stoi(vals.at(0)); int new_id = std::stoi(vals.at(1)); if (not core_map.contains(change_id) or new_id >= Shared::coreCount) continue; core_map.at(change_id) = new_id; } } catch (...) {} } return core_map; } auto collect(const bool no_update) -> cpu_info& { if (Runner::stopping or (no_update and not current_cpu.cpu_percent.at("total").empty())) return current_cpu; auto& cpu = current_cpu; ifstream cread; try { //? Get cpu load averages from /proc/loadavg cread.open(Shared::procPath / "loadavg"); if (cread.good()) { cread >> cpu.load_avg[0] >> cpu.load_avg[1] >> cpu.load_avg[2]; } cread.close(); //? Get cpu total times for all cores from /proc/stat cread.open(Shared::procPath / "stat"); for (int i = 0; cread.good() and cread.peek() == 'c'; i++) { cread.ignore(SSmax, ' '); //? Expected on kernel 2.6.3> : 0=user, 1=nice, 2=system, 3=idle, 4=iowait, 5=irq, 6=softirq, 7=steal, 8=guest, 9=guest_nice vector times; long long total_sum = 0; for (uint64_t val; cread >> val; total_sum += val) { times.push_back(val); } cread.clear(); if (times.size() < 4) throw std::runtime_error("Malformatted /proc/stat"); //? Subtract fields 8-9 and any future unknown fields const long long totals = max(0ll, total_sum - (times.size() > 8 ? std::accumulate(times.begin() + 8, times.end(), 0) : 0)); //? Add iowait field if present const long long idles = max(0ll, times.at(3) + (times.size() > 4 ? times.at(4) : 0)); //? Calculate values for totals from first line of stat if (i == 0) { const long long calc_totals = max(1ll, totals - cpu_old.at("totals")); const long long calc_idles = max(1ll, idles - cpu_old.at("idles")); cpu_old.at("totals") = totals; cpu_old.at("idles") = idles; //? Total usage of cpu cpu.cpu_percent.at("total").push_back(clamp((long long)round((double)(calc_totals - calc_idles) * 100 / calc_totals), 0ll, 100ll)); //? Reduce size if there are more values than needed for graph while (cmp_greater(cpu.cpu_percent.at("total").size(), width * 2)) cpu.cpu_percent.at("total").pop_front(); //? Populate cpu.cpu_percent with all fields from stat for (int ii = 0; const auto& val : times) { cpu.cpu_percent.at(time_names.at(ii)).push_back(clamp((long long)round((double)(val - cpu_old.at(time_names.at(ii))) * 100 / calc_totals), 0ll, 100ll)); cpu_old.at(time_names.at(ii)) = val; //? Reduce size if there are more values than needed for graph while (cmp_greater(cpu.cpu_percent.at(time_names.at(ii)).size(), width * 2)) cpu.cpu_percent.at(time_names.at(ii)).pop_front(); if (++ii == 10) break; } } //? Calculate cpu total for each core else { if (i > Shared::coreCount) break; const long long calc_totals = max(0ll, totals - core_old_totals.at(i-1)); const long long calc_idles = max(0ll, idles - core_old_idles.at(i-1)); core_old_totals.at(i-1) = totals; core_old_idles.at(i-1) = idles; cpu.core_percent.at(i-1).push_back(clamp((long long)round((double)(calc_totals - calc_idles) * 100 / calc_totals), 0ll, 100ll)); //? Reduce size if there are more values than needed for graph if (cpu.core_percent.at(i-1).size() > 40) cpu.core_percent.at(i-1).pop_front(); } } } catch (const std::exception& e) { Logger::debug("get_cpuHz() : " + (string)e.what()); if (cread.bad()) throw std::runtime_error("Failed to read /proc/stat"); else throw std::runtime_error("collect() : " + (string)e.what()); } if (Config::getB("show_cpu_freq")) cpuHz = get_cpuHz(); if (Config::getB("check_temp") and got_sensors) update_sensors(); return cpu; } } namespace Mem { bool has_swap = false; vector fstab; fs::file_time_type fstab_time; int disk_ios = 0; vector last_found; mem_info current_mem {}; auto collect(const bool no_update) -> mem_info& { if (Runner::stopping or no_update) return current_mem; auto& show_swap = Config::getB("show_swap"); auto& swap_disk = Config::getB("swap_disk"); auto& show_disks = Config::getB("show_disks"); auto& mem = current_mem; mem.stats.at("swap_total") = 0; //? Read memory info from /proc/meminfo ifstream meminfo(Shared::procPath / "meminfo"); if (meminfo.good()) { bool got_avail = false; for (string label; meminfo >> label;) { if (label == "MemFree:") { meminfo >> mem.stats.at("free"); mem.stats.at("free") <<= 10; } else if (label == "MemAvailable:") { meminfo >> mem.stats.at("available"); mem.stats.at("available") <<= 10; got_avail = true; } else if (label == "Cached:") { meminfo >> mem.stats.at("cached"); mem.stats.at("cached") <<= 10; if (not show_swap and not swap_disk) break; } else if (label == "SwapTotal:") { meminfo >> mem.stats.at("swap_total"); mem.stats.at("swap_total") <<= 10; } else if (label == "SwapFree:") { meminfo >> mem.stats.at("swap_free"); mem.stats.at("swap_free") <<= 10; break; } meminfo.ignore(SSmax, '\n'); } if (not got_avail) mem.stats.at("available") = mem.stats.at("free") + mem.stats.at("cached"); mem.stats.at("used") = Shared::totalMem - mem.stats.at("available"); if (mem.stats.at("swap_total") > 0) mem.stats.at("swap_used") = mem.stats.at("swap_total") - mem.stats.at("swap_free"); } else throw std::runtime_error("Failed to read /proc/meminfo"); meminfo.close(); //? Calculate percentages for (const auto& name : mem_names) { mem.percent.at(name).push_back(round((double)mem.stats.at(name) * 100 / Shared::totalMem)); while (cmp_greater(mem.percent.at(name).size(), width * 2)) mem.percent.at(name).pop_front(); } if (show_swap and mem.stats.at("swap_total") > 0) { for (const auto& name : swap_names) { mem.percent.at(name).push_back(round((double)mem.stats.at(name) * 100 / mem.stats.at("swap_total"))); while (cmp_greater(mem.percent.at(name).size(), width * 2)) mem.percent.at(name).pop_front(); } has_swap = true; } else has_swap = false; //? Get disks stats if (show_disks) { try { auto& disks_filter = Config::getS("disks_filter"); bool filter_exclude = false; auto& use_fstab = Config::getB("use_fstab"); auto& only_physical = Config::getB("only_physical"); auto& disks = mem.disks; ifstream diskread; vector filter; if (not disks_filter.empty()) { filter = ssplit(disks_filter); if (filter.at(0).starts_with("exclude=")) { filter_exclude = true; filter.at(0) = filter.at(0).substr(8); } } //? Get list of "real" filesystems from /proc/filesystems vector fstypes; if (only_physical and not use_fstab) { fstypes = {"zfs", "wslfs", "drvfs"}; diskread.open(Shared::procPath / "filesystems"); if (diskread.good()) { for (string fstype; diskread >> fstype;) { if (not is_in(fstype, "nodev", "squashfs", "nullfs")) fstypes.push_back(fstype); diskread.ignore(SSmax, '\n'); } } else throw std::runtime_error("Failed to read /proc/filesystems"); diskread.close(); } //? Get disk list to use from fstab if enabled if (use_fstab and fs::last_write_time("/etc/fstab") != fstab_time) { fstab.clear(); fstab_time = fs::last_write_time("/etc/fstab"); diskread.open("/etc/fstab"); if (diskread.good()) { for (string instr; diskread >> instr;) { if (not instr.starts_with('#')) { diskread >> instr; if (not is_in(instr, "none", "swap")) fstab.push_back(instr); } diskread.ignore(SSmax, '\n'); } } else throw std::runtime_error("Failed to read /etc/fstab"); diskread.close(); } //? Get mounts from /etc/mtab or /proc/self/mounts diskread.open((fs::exists("/etc/mtab") ? fs::path("/etc/mtab") : Shared::procPath / "self/mounts")); if (diskread.good()) { vector found; found.reserve(last_found.size()); string dev, mountpoint, fstype; while (not diskread.eof()) { std::error_code ec; diskread >> dev >> mountpoint >> fstype; //? Match filter if not empty if (not filter.empty()) { bool match = v_contains(filter, mountpoint); if ((filter_exclude and match) or (not filter_exclude and not match)) continue; } if ((not use_fstab and not only_physical) or (use_fstab and v_contains(fstab, mountpoint)) or (not use_fstab and only_physical and v_contains(fstypes, fstype))) { found.push_back(mountpoint); if (not v_contains(last_found, mountpoint)) redraw = true; //? Save mountpoint, name, dev path and path to /sys/block stat file if (not disks.contains(mountpoint)) { disks[mountpoint] = disk_info{fs::canonical(dev, ec), fs::path(mountpoint).filename()}; if (disks.at(mountpoint).dev.empty()) disks.at(mountpoint).dev = dev; if (disks.at(mountpoint).name.empty()) disks.at(mountpoint).name = (mountpoint == "/" ? "root" : mountpoint); string devname = disks.at(mountpoint).dev.filename(); while (devname.size() >= 2) { if (fs::exists("/sys/block/" + devname + "/stat", ec) and access(string("/sys/block/" + devname + "/stat").c_str(), R_OK) == 0) { disks.at(mountpoint).stat = "/sys/block/" + devname + "/stat"; break; } devname.resize(devname.size() - 1); } } } diskread.ignore(SSmax, '\n'); } //? Remove disks no longer mounted or filtered out if (swap_disk and has_swap) found.push_back("swap"); for (auto it = disks.begin(); it != disks.end();) { if (not v_contains(found, it->first)) it = disks.erase(it); else it++; } last_found = std::move(found); } else throw std::runtime_error("Failed to get mounts from /etc/mtab and /proc/self/mounts"); diskread.close(); //? Get disk/partition stats for (auto& [mountpoint, disk] : disks) { if (std::error_code ec; not fs::exists(mountpoint, ec)) continue; struct statvfs vfs; if (statvfs(mountpoint.c_str(), &vfs) < 0) { Logger::warning("Failed to get disk/partition stats with statvfs() for: " + mountpoint); continue; } disk.total = vfs.f_blocks * vfs.f_frsize; disk.free = vfs.f_bfree * vfs.f_frsize; disk.used = disk.total - disk.free; disk.used_percent = round((double)disk.used * 100 / disk.total); disk.free_percent = 100 - disk.used_percent; } //? Setup disks order in UI and add swap if enabled mem.disks_order.clear(); if (disks.contains("/")) mem.disks_order.push_back("/"); if (swap_disk and has_swap) { mem.disks_order.push_back("swap"); if (not disks.contains("swap")) disks["swap"] = {"", "swap"}; disks.at("swap").total = mem.stats.at("swap_total"); disks.at("swap").used = mem.stats.at("swap_used"); disks.at("swap").free = mem.stats.at("swap_free"); disks.at("swap").used_percent = mem.percent.at("swap_used").back(); disks.at("swap").free_percent = mem.percent.at("swap_free").back(); } for (const auto& name : last_found) if (not is_in(name, "/", "swap")) mem.disks_order.push_back(name); //? Get disks IO int64_t sectors_read, sectors_write; disk_ios = 0; for (auto& [ignored, disk] : disks) { if (disk.stat.empty() or access(disk.stat.c_str(), R_OK) != 0) continue; diskread.open(disk.stat); if (diskread.good()) { disk_ios++; for (int i = 0; i < 2; i++) { diskread >> std::ws; diskread.ignore(SSmax, ' '); } diskread >> sectors_read; if (disk.io_read.empty()) disk.io_read.push_back(0); else disk.io_read.push_back(max(0l, (sectors_read - disk.old_io.at(0)) * 512)); disk.old_io.at(0) = sectors_read; while (cmp_greater(disk.io_read.size(), width * 2)) disk.io_read.pop_front(); for (int i = 0; i < 3; i++) { diskread >> std::ws; diskread.ignore(SSmax, ' '); } diskread >> sectors_write; if (disk.io_write.empty()) disk.io_write.push_back(0); else disk.io_write.push_back(max(0l, (sectors_write - disk.old_io.at(1)) * 512)); disk.old_io.at(1) = sectors_write; while (cmp_greater(disk.io_write.size(), width * 2)) disk.io_write.pop_front(); } diskread.close(); } } catch (const std::exception& e) { Logger::warning("Error in Mem::collect() : " + (string)e.what()); } } return mem; } } namespace Net { unordered_flat_map current_net; net_info empty_net = {}; vector interfaces; string selected_iface; int errors = 0; unordered_flat_map graph_max = { {"download", {}}, {"upload", {}} }; unordered_flat_map> max_count = { {"download", {}}, {"upload", {}} }; bool rescale = true; //* RAII wrapper for getifaddrs class getifaddr_wrapper { struct ifaddrs* ifaddr; public: int status; getifaddr_wrapper() { status = getifaddrs(&ifaddr); } ~getifaddr_wrapper() { freeifaddrs(ifaddr); } auto operator()() -> struct ifaddrs* { return ifaddr; } }; auto collect(const bool no_update) -> net_info& { auto& net = current_net; auto& config_iface = Config::getS("net_iface"); auto& net_sync = Config::getB("net_sync"); auto& net_auto = Config::getB("net_auto"); if (not no_update and errors < 3) { //? Get interface list using getifaddrs() wrapper getifaddr_wrapper if_wrap {}; if (if_wrap.status != 0) { errors++; Logger::error("Net::collect() -> getifaddrs() failed with id " + to_string(if_wrap.status)); return empty_net; } int family = 0; char ip[NI_MAXHOST]; interfaces.clear(); string ipv4, ipv6; //? Iteration over all items in getifaddrs() list for (auto* ifa = if_wrap(); ifa != NULL; ifa = ifa->ifa_next) { if (ifa->ifa_addr == NULL) continue; family = ifa->ifa_addr->sa_family; const auto& iface = ifa->ifa_name; //? Get IPv4 address if (family == AF_INET) { if (getnameinfo(ifa->ifa_addr, sizeof(struct sockaddr_in), ip, NI_MAXHOST, NULL, 0, NI_NUMERICHOST) == 0) net[iface].ipv4 = ip; } //? Get IPv6 address else if (family == AF_INET6) { if (getnameinfo(ifa->ifa_addr, sizeof(struct sockaddr_in6), ip, NI_MAXHOST, NULL, 0, NI_NUMERICHOST) == 0) net[iface].ipv6 = ip; } //? Update available interfaces vector and get status of interface if (not v_contains(interfaces, iface)) { interfaces.push_back(iface); net[iface].connected = (ifa->ifa_flags & IFF_RUNNING); } } //? Get total recieved and transmitted bytes + device address if no ip was found for (const auto& iface : interfaces) { if (net.at(iface).ipv4.empty() and net.at(iface).ipv6.empty()) net.at(iface).ipv4 = readfile("/sys/class/net/" + iface + "/address"); for (const string dir : {"download", "upload"}) { const fs::path sys_file = "/sys/class/net/" + iface + "/statistics/" + (dir == "download" ? "rx_bytes" : "tx_bytes"); auto& saved_stat = net.at(iface).stat.at(dir); auto& bandwidth = net.at(iface).bandwidth.at(dir); const uint64_t val = max(stoul(readfile(sys_file, "0")), saved_stat.last); //? Update speed, total and top values saved_stat.speed = val - (saved_stat.last == 0 ? val : saved_stat.last); if (saved_stat.speed > saved_stat.top) saved_stat.top = saved_stat.speed; if (saved_stat.offset > val) saved_stat.offset = 0; saved_stat.total = val - saved_stat.offset; saved_stat.last = val; //? Add values to graph bandwidth.push_back(saved_stat.speed); while (cmp_greater(bandwidth.size(), width * 2)) bandwidth.pop_front(); //? Set counters for auto scaling if (net_auto and selected_iface == iface) { if (saved_stat.speed > graph_max[dir]) { ++max_count[dir][0]; if (max_count[dir][1] > 0) --max_count[dir][1]; } else if (graph_max[dir] > 10 << 10 and saved_stat.speed < graph_max[dir] / 10) { ++max_count[dir][1]; if (max_count[dir][0] > 0) --max_count[dir][0]; } } } } //? Clean up net map if needed if (net.size() > interfaces.size()) { for (auto it = net.begin(); it != net.end();) { if (not v_contains(interfaces, it->first)) it = net.erase(it); else it++; } net.compact(); } } //? Return empty net_info struct if no interfaces was found if (net.empty()) return empty_net; //? Find an interface to display if selected isn't set or valid if (selected_iface.empty() or not v_contains(interfaces, selected_iface)) { max_count["download"][0] = max_count["download"][1] = max_count["upload"][0] = max_count["upload"][1] = 0; redraw = true; if (net_auto) rescale = true; if (not config_iface.empty() and v_contains(interfaces, config_iface)) selected_iface = config_iface; else { //? Sort interfaces by total upload + download bytes auto sorted_interfaces = interfaces; rng::sort(sorted_interfaces, [&](const auto& a, const auto& b){ return cmp_greater(net.at(a).stat["download"].total + net.at(a).stat["upload"].total, net.at(b).stat["download"].total + net.at(b).stat["upload"].total); }); selected_iface.clear(); //? Try to set to a connected interface for (const auto& iface : sorted_interfaces) { if (net.at(iface).connected) selected_iface = iface; break; } //? If no interface is connected set to first available if (selected_iface.empty()) selected_iface = sorted_interfaces.at(0); } } //? Calculate max scale for graphs if needed if (net_auto) { bool sync = false; for (const auto& dir: {"download", "upload"}) { for (const auto& sel : {0, 1}) { if (rescale or max_count[dir][sel] >= 5) { const uint64_t avg_speed = (net[selected_iface].bandwidth[dir].size() > 5 ? std::accumulate(net.at(selected_iface).bandwidth.at(dir).rbegin(), net.at(selected_iface).bandwidth.at(dir).rbegin() + 5, 0) / 5 : net[selected_iface].stat[dir].speed); graph_max[dir] = max(uint64_t(avg_speed * (sel == 0 ? 1.3 : 3.0)), 10ul << 10); max_count[dir][0] = max_count[dir][1] = 0; redraw = true; if (net_sync) sync = true; break; } } //? Sync download/upload graphs if enabled if (sync) { const auto other = (string(dir) == "upload" ? "download" : "upload"); graph_max[other] = graph_max[dir]; max_count[other][0] = max_count[other][1] = 0; break; } } } rescale = false; return net.at(selected_iface); } } namespace Proc { vector current_procs; unordered_flat_map uid_user; fs::file_time_type passwd_time; uint64_t cputimes; int collapse = -1, expand = -1; uint64_t old_cputimes = 0; atomic numpids = 0; int filter_found = 0; detail_container detailed; //* Generate process tree list void _tree_gen(const proc_info& cur_proc, const vector& in_procs, vector& out_procs, int cur_depth, const bool collapsed, const string& filter, bool found=false) { auto cur_pos = out_procs.size(); bool filtering = false; //? If filtering, include children of matching processes if (not filter.empty() and not found) { if (not s_contains(std::to_string(cur_proc.pid), filter) and not s_contains(cur_proc.name, filter) and not s_contains(cur_proc.cmd, filter) and not s_contains(cur_proc.user, filter)) { filtering = true; } else { found = true; cur_depth = 0; } } //? Add process to vector if not filtered out or currently in a collapsed sub-tree if (not collapsed and not filtering) { out_procs.push_back(cur_proc); //? Try to find name of the binary file and append to program name if not the same if (cur_proc.short_cmd.empty() and not cur_proc.cmd.empty()) { std::string_view cmd_view = cur_proc.cmd; cmd_view = cmd_view.substr(0, min(cmd_view.find(' '), cmd_view.size())); cmd_view = cmd_view.substr(min(cmd_view.find_last_of('/') + 1, cmd_view.size())); out_procs.back().short_cmd = (string)cmd_view; } } //? Recursive iteration over all children int children = 0; for (auto& p : rng::equal_range(in_procs, cur_proc.pid, rng::less{}, &proc_info::ppid)) { if (collapsed and not filtering) { out_procs.back().cpu_p += p.cpu_p; out_procs.back().mem += p.mem; out_procs.back().threads += p.threads; } else children++; _tree_gen(p, in_procs, out_procs, cur_depth + 1, (collapsed ? true : cur_proc.collapsed), filter, found); } if (collapsed or filtering) return; //? Add tree terminator symbol if it's the last child in a sub-tree if (out_procs.size() > cur_pos + 1 and not out_procs.back().prefix.ends_with("]─")) out_procs.back().prefix.replace(out_procs.back().prefix.size() - 8, 8, " └─ "); //? Add collapse/expand symbols if process have any children out_procs.at(cur_pos).prefix = " │ "s * cur_depth + (children > 0 ? (cur_proc.collapsed ? "[+]─" : "[-]─") : " ├─ "); } //* Get detailed info for selected process void _collect_details(const size_t pid, const uint64_t uptime, vector& procs) { fs::path pid_path = Shared::procPath / std::to_string(pid); if (pid != detailed.last_pid) { detailed = {}; detailed.last_pid = pid; detailed.skip_smaps = not Config::getB("proc_info_smaps"); } //? Copy proc_info for process from proc vector auto p_info = rng::find(procs, pid, &proc_info::pid); detailed.entry = *p_info; //? Update cpu percent deque for process cpu graph if (not Config::getB("proc_per_core")) detailed.entry.cpu_p *= Shared::coreCount; detailed.cpu_percent.push_back(round(detailed.entry.cpu_p)); while (cmp_greater(detailed.cpu_percent.size(), width)) detailed.cpu_percent.pop_front(); //? Process runtime detailed.elapsed = sec_to_dhms(uptime - (detailed.entry.cpu_s / Shared::clkTck)); if (detailed.elapsed.size() > 8) detailed.elapsed.resize(detailed.elapsed.size() - 3); //? Get parent process name if (detailed.parent.empty()) { auto p_entry = rng::find(procs, detailed.entry.ppid, &proc_info::pid); if (p_entry != procs.end()) detailed.parent = p_entry->name; } //? Expand process status from single char to explanative string detailed.status = (proc_states.contains(detailed.entry.state)) ? proc_states.at(detailed.entry.state) : "Unknown"; ifstream d_read; string short_str; //? Try to get RSS mem from proc/[pid]/smaps detailed.memory.clear(); if (not detailed.skip_smaps and fs::exists(pid_path / "smaps")) { d_read.open(pid_path / "smaps"); uint64_t rss = 0; try { while (d_read.good()) { d_read.ignore(SSmax, 'R'); if (d_read.peek() == 's') { d_read.ignore(SSmax, ':'); getline(d_read, short_str, 'k'); rss += stoull(short_str); } } if (rss == detailed.entry.mem >> 10) detailed.skip_smaps = true; else { detailed.mem_bytes.push_back(rss << 10); detailed.memory = floating_humanizer(rss, false, 1); } } catch (const std::invalid_argument&) {} catch (const std::out_of_range&) {} d_read.close(); } if (detailed.memory.empty()) { detailed.mem_bytes.push_back(detailed.entry.mem); detailed.memory = floating_humanizer(detailed.entry.mem); } if (detailed.first_mem == -1 or detailed.first_mem < detailed.mem_bytes.back() / 2 or detailed.first_mem > detailed.mem_bytes.back() * 4) { detailed.first_mem = min((uint64_t)detailed.mem_bytes.back() * 2, Shared::totalMem); redraw = true; } while (cmp_greater(detailed.mem_bytes.size(), width)) detailed.mem_bytes.pop_front(); //? Get bytes read and written from proc/[pid]/io if (fs::exists(pid_path / "io")) { d_read.open(pid_path / "io"); try { string name; while (d_read.good()) { getline(d_read, name, ':'); if (name.ends_with("read_bytes")) { getline(d_read, short_str); detailed.io_read = floating_humanizer(stoull(short_str)); } else if (name.ends_with("write_bytes")) { getline(d_read, short_str); detailed.io_write = floating_humanizer(stoull(short_str)); break; } else d_read.ignore(SSmax, '\n'); } } catch (const std::invalid_argument&) {} catch (const std::out_of_range&) {} d_read.close(); } } //* Collects and sorts process information from /proc auto collect(const bool no_update) -> vector& { const auto& sorting = Config::getS("proc_sorting"); const auto& reverse = Config::getB("proc_reversed"); const auto& filter = Config::getS("proc_filter"); const auto& per_core = Config::getB("proc_per_core"); const auto& tree = Config::getB("proc_tree"); const auto& show_detailed = Config::getB("show_detailed"); const size_t detailed_pid = Config::getI("detailed_pid"); ifstream pread; string long_string; string short_str; filter_found = 0; const double uptime = system_uptime(); const int cmult = (per_core) ? Shared::coreCount : 1; bool got_detailed = false; //* Use pids from last update if only changing filter, sorting or tree options if (no_update and not current_procs.empty()) { if (show_detailed and detailed_pid != detailed.last_pid) _collect_details(detailed_pid, round(uptime), current_procs); } //* ---------------------------------------------Collection start---------------------------------------------- else { //? Update uid_user map if /etc/passwd changed since last run if (not Shared::passwd_path.empty() and fs::last_write_time(Shared::passwd_path) != passwd_time) { string r_uid, r_user; passwd_time = fs::last_write_time(Shared::passwd_path); uid_user.clear(); pread.open(Shared::passwd_path); if (pread.good()) { while (not pread.eof()) { getline(pread, r_user, ':'); pread.ignore(SSmax, ':'); getline(pread, r_uid, ':'); uid_user[r_uid] = r_user; pread.ignore(SSmax, '\n'); } } else { Shared::passwd_path.clear(); } pread.close(); } //? Get cpu total times from /proc/stat cputimes = 0; pread.open(Shared::procPath / "stat"); if (pread.good()) { pread.ignore(SSmax, ' '); for (uint64_t times; pread >> times; cputimes += times); } else throw std::runtime_error("Failure to read /proc/stat"); pread.close(); //? Iterate over all pids in /proc vector found; for (const auto& d: fs::directory_iterator(Shared::procPath)) { if (Runner::stopping) return current_procs; if (pread.is_open()) pread.close(); const string pid_str = d.path().filename(); if (not isdigit(pid_str[0])) continue; const size_t pid = stoul(pid_str); found.push_back(pid); //? Check if pid already exists auto find_old = rng::find(current_procs, pid, &proc_info::pid); bool no_cache = false; if (find_old == current_procs.end()) { current_procs.push_back({pid}); find_old = current_procs.end() - 1; no_cache = true; } auto& new_proc = *find_old; //? Get program name, command and username if (no_cache) { pread.open(d.path() / "comm"); if (not pread.good()) continue; getline(pread, new_proc.name); pread.close(); new_proc.name_offset = rng::count(new_proc.name, ' '); pread.open(d.path() / "cmdline"); if (not pread.good()) continue; long_string.clear(); while(getline(pread, long_string, '\0')) new_proc.cmd += long_string + ' '; pread.close(); if (not new_proc.cmd.empty()) new_proc.cmd.pop_back(); pread.open(d.path() / "status"); if (not pread.good()) continue; string uid; string line; while (not pread.eof()) { getline(pread, line, ':'); if (line == "Uid") { pread.ignore(); getline(pread, uid, '\t'); break; } else { pread.ignore(SSmax, '\n'); } } pread.close(); new_proc.user = (uid_user.contains(uid)) ? uid_user.at(uid) : uid; } //? Parse /proc/[pid]/stat pread.open(d.path() / "stat"); if (not pread.good()) continue; //? Check cached value for whitespace characters in name and set offset to get correct fields from stat file const auto& offset = new_proc.name_offset; short_str.clear(); size_t x = 0, next_x = 3; uint64_t cpu_t = 0; try { while (x < 40) { while (pread.good() and ++x < next_x + offset) { pread.ignore(SSmax, ' '); } if (pread.bad()) break; getline(pread, short_str, ' '); switch (x-offset) { case 3: //? Process state new_proc.state = short_str.at(0); continue; case 4: //? Parent pid new_proc.ppid = stoull(short_str); next_x = 14; continue; case 14: //? Process utime cpu_t = stoull(short_str); continue; case 15: //? Process stime cpu_t += stoull(short_str); next_x = 19; continue; case 19: //? Nice value new_proc.p_nice = stoull(short_str); continue; case 20: //? Number of threads new_proc.threads = stoull(short_str); if (new_proc.cpu_s == 0) { next_x = 22; new_proc.cpu_t = cpu_t; } else next_x = 24; continue; case 22: //? Get cpu seconds if missing new_proc.cpu_s = stoull(short_str); next_x = 24; continue; case 24: //? RSS memory (can be inaccurate, but parsing smaps increases total cpu usage by ~20x) new_proc.mem = stoull(short_str) * Shared::pageSize; next_x = 39; continue; case 39: //? CPU number last executed on new_proc.cpu_n = stoull(short_str); x++; break; } } } catch (const std::invalid_argument&) { continue; } catch (const std::out_of_range&) { continue; } pread.close(); if (x-offset < 24) continue; //? Process cpu usage since last update new_proc.cpu_p = round(cmult * 1000 * (cpu_t - new_proc.cpu_t) / max(1ul, cputimes - old_cputimes)) / 10.0; //? Process cumulative cpu usage since process start new_proc.cpu_c = (double)cpu_t / max(1.0, (uptime * Shared::clkTck) - new_proc.cpu_s); //? Update cache with latest cpu times new_proc.cpu_t = cpu_t; if (show_detailed and not got_detailed and new_proc.pid == detailed_pid) { got_detailed = true; } } // //? Clear dead processes from cache at a regular interval // if (++counter >= 1000 or (cache.size() > found.size() + 100)) { // counter = 0; // for (auto it = cache.begin(); it != cache.end();) { // if (not v_contains(found, it->first)) // it = cache.erase(it); // else // it++; // } // cache.compact(); // } //? Clear dead processes from list auto eraser = rng::remove_if(current_procs, [&](const auto& element){ return not v_contains(found, element.pid); }); current_procs.erase(eraser.begin(), eraser.end()); //? Update the details info box for process if active if (show_detailed and got_detailed) { _collect_details(detailed_pid, round(uptime), current_procs); } else if (show_detailed and not got_detailed and detailed.status != "Dead") { detailed.status = "Dead"; redraw = true; } old_cputimes = cputimes; // current_procs.clear(); // current_procs = procs; } //* ---------------------------------------------Collection done----------------------------------------------- //* Sort processes switch (v_index(sort_vector, sorting)) { case 0: rng::sort(current_procs, rng::greater{}, &proc_info::pid); break; case 1: rng::sort(current_procs, rng::greater{}, &proc_info::name); break; case 2: rng::sort(current_procs, rng::greater{}, &proc_info::cmd); break; case 3: rng::sort(current_procs, rng::greater{}, &proc_info::threads); break; case 4: rng::sort(current_procs, rng::greater{}, &proc_info::user); break; case 5: rng::sort(current_procs, rng::greater{}, &proc_info::mem); break; case 6: rng::sort(current_procs, rng::greater{}, &proc_info::cpu_p); break; case 7: rng::sort(current_procs, rng::greater{}, &proc_info::cpu_c); break; } if (reverse) rng::reverse(current_procs); //* When sorting with "cpu lazy" push processes over threshold cpu usage to the front regardless of cumulative usage if (not tree and not reverse and sorting == "cpu lazy") { double max = 10.0, target = 30.0; for (size_t i = 0, x = 0, offset = 0; i < current_procs.size(); i++) { if (i <= 5 and current_procs.at(i).cpu_p > max) max = current_procs.at(i).cpu_p; else if (i == 6) target = (max > 30.0) ? max : 10.0; if (i == offset and current_procs.at(i).cpu_p > 30.0) offset++; else if (current_procs.at(i).cpu_p > target) { rotate(current_procs.begin() + offset, current_procs.begin() + i, current_procs.begin() + i + 1); if (++x > 10) break; } } } //* Match filter if defined for (auto& p : current_procs) { if (not tree and not filter.empty()) { if (not s_contains(to_string(p.pid), filter) and not s_contains(p.name, filter) and not s_contains(p.cmd, filter) and not s_contains(p.user, filter)) { p.filtered = true; filter_found++; } } else if (not tree) { p.filtered = false; } } //* Generate tree view if enabled if (tree) { if (auto find_pid = (collapse != -1 ? collapse : expand); find_pid != -1) { auto collapser = rng::find(current_procs, find_pid, &proc_info::pid); if (collapser != current_procs.end()) { if (collapse == expand) { collapser->collapsed = not collapser->collapsed; collapse = expand = -1; } else if (collapse > -1) { collapser->collapsed = true; collapse = -1; } else if (expand > -1) { collapser->collapsed = false; expand = -1; } } } vector tree_procs; tree_procs.reserve(current_procs.size()); //? Stable sort to retain selected sorting among processes with the same parent rng::stable_sort(current_procs, rng::less{}, &proc_info::ppid); //? Start recursive iteration over processes with the lowest shared parent pids for (const auto& p : rng::equal_range(current_procs, current_procs.at(0).ppid, rng::less{}, &proc_info::ppid)) { _tree_gen(p, current_procs, tree_procs, 0, false, filter); } //procs.clear(); current_procs = std::move(tree_procs); } numpids = (not filter.empty() ? filter_found : (int)current_procs.size()); return current_procs; } } namespace Tools { double system_uptime() { string upstr; ifstream pread(Shared::procPath / "uptime"); getline(pread, upstr, ' '); pread.close(); return stod(upstr); } } #endif