/* Copyright 2021 Aristocratos (jakob@qvantnet.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. indent = tab tab-size = 4 */ #if defined(__linux__) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using std::string, std::vector, std::ifstream, std::atomic, std::numeric_limits, std::streamsize, std::round, std::string_literals::operator""s, robin_hood::unordered_flat_map; namespace fs = std::filesystem; namespace rng = std::ranges; using namespace Tools; //? --------------------------------------------------- FUNCTIONS ----------------------------------------------------- namespace Tools { double system_uptime(){ string upstr; ifstream pread("/proc/uptime"); getline(pread, upstr, ' '); pread.close(); return stod(upstr); } } namespace Shared { fs::path proc_path; fs::path passwd_path; fs::file_time_type passwd_time; long page_size; long clk_tck; void init(){ proc_path = (fs::is_directory(fs::path("/proc")) and access("/proc", R_OK) != -1) ? "/proc" : ""; if (proc_path.empty()) { string errmsg = "Proc filesystem not found or no permission to read from it!"; Logger::error(errmsg); std::cout << "ERROR: " << errmsg << std::endl; exit(1); } passwd_path = (access("/etc/passwd", R_OK) != -1) ? fs::path("/etc/passwd") : passwd_path; if (passwd_path.empty()) Logger::warning("Could not read /etc/passwd, will show UID instead of username."); page_size = sysconf(_SC_PAGE_SIZE); if (page_size <= 0) { page_size = 4096; Logger::warning("Could not get system page size. Defaulting to 4096, processes memory usage might be incorrect."); } clk_tck = sysconf(_SC_CLK_TCK); if (clk_tck <= 0) { clk_tck = 100; Logger::warning("Could not get system clocks per second. Defaulting to 100, processes cpu usage might be incorrect."); } } } namespace Proc { namespace { struct p_cache { string name, cmd, user; uint64_t cpu_t = 0, cpu_s = 0; string prefix = ""; size_t depth = 0; bool collapsed = false; }; unordered_flat_map cache; unordered_flat_map uid_user; uint counter = 0; } uint64_t old_cputimes = 0; size_t numpids = 500; atomic stop (false); atomic collecting (false); vector sort_vector = { "pid", "name", "command", "threads", "user", "memory", "cpu direct", "cpu lazy", }; //* Generate process tree list void _tree_gen(const proc_info& cur_proc, const vector& in_procs, vector& out_procs, const int cur_depth, const bool collapsed, const string& prefix){ auto cur_pos = out_procs.size(); if (not collapsed) out_procs.push_back(cur_proc); int children = 0; for (auto& p : rng::equal_range(in_procs, cur_proc.pid, rng::less{}, &proc_info::ppid)) { if (collapsed) { out_procs.back().cpu_p += p.cpu_p; out_procs.back().mem += p.mem; out_procs.back().threads += p.threads; } else children++; _tree_gen(p, in_procs, out_procs, cur_depth + 1, (collapsed ? true : cache.at(cur_proc.pid).collapsed), prefix); } if (collapsed) return; if (out_procs.size() > cur_pos + 1 and not out_procs.back().prefix.ends_with("] ")) out_procs.back().prefix.replace(out_procs.back().prefix.size() - 8, 8, " └─ "); out_procs.at(cur_pos).prefix = " │ "s * cur_depth + (children > 0 ? (cache.at(cur_proc.pid).collapsed ? "[+] " : "[-] ") : prefix); } vector current_procs; //* Collects and sorts process information from /proc, saves to and returns reference to Proc::current_procs; vector& collect(){ atomic_wait_set(collecting); auto& sorting = Config::getS("proc_sorting"); auto& reverse = Config::getB("proc_reversed"); auto& filter = Config::getS("proc_filter"); auto& per_core = Config::getB("proc_per_core"); auto& tree = Config::getB("proc_tree"); ifstream pread; string long_string; string short_str; auto uptime = system_uptime(); vector procs; procs.reserve((numpids + 10)); int npids = 0; int cmult = (per_core) ? Global::coreCount : 1; //* Update uid_user map if /etc/passwd changed since last run if (not Shared::passwd_path.empty() and fs::last_write_time(Shared::passwd_path) != Shared::passwd_time) { string r_uid, r_user; Shared::passwd_time = fs::last_write_time(Shared::passwd_path); uid_user.clear(); pread.open(Shared::passwd_path); if (pread.good()) { while (not pread.eof()){ getline(pread, r_user, ':'); pread.ignore(SSmax, ':'); getline(pread, r_uid, ':'); uid_user[r_uid] = r_user; pread.ignore(SSmax, '\n'); } } pread.close(); } //* Get cpu total times from /proc/stat uint64_t cputimes = 0; pread.open(Shared::proc_path / "stat"); if (pread.good()) { pread.ignore(SSmax, ' '); for (uint64_t times; pread >> times; cputimes += times); pread.close(); } else return current_procs; //* Iterate over all pids in /proc for (auto& d: fs::directory_iterator(Shared::proc_path)){ if (pread.is_open()) pread.close(); if (stop) { collecting = false; stop = false; return current_procs; } bool new_cache = false; string pid_str = d.path().filename(); if (d.is_directory() and isdigit(pid_str[0])) { npids++; proc_info new_proc (stoul(pid_str)); //* Cache program name, command and username if (not cache.contains(new_proc.pid)) { string name, cmd, user; new_cache = true; pread.open(d.path() / "comm"); if (pread.good()) { getline(pread, name); pread.close(); } else continue; pread.open(d.path() / "cmdline"); if (pread.good()) { string tmpstr; while(getline(pread, tmpstr, '\0')) cmd += tmpstr + ' '; pread.close(); if (not cmd.empty()) cmd.pop_back(); } else continue; pread.open(d.path() / "status"); if (pread.good()) { string uid; while (not pread.eof()){ string line; getline(pread, line, ':'); if (line == "Uid") { pread.ignore(); getline(pread, uid, '\t'); break; } else { pread.ignore(SSmax, '\n'); } } pread.close(); user = (uid_user.contains(uid)) ? uid_user.at(uid) : uid; } else continue; cache[new_proc.pid] = {name, cmd, user}; } //* Match filter if defined if (not filter.empty() and pid_str.find(filter) == string::npos and cache[new_proc.pid].name.find(filter) == string::npos and cache[new_proc.pid].cmd.find(filter) == string::npos and cache[new_proc.pid].user.find(filter) == string::npos) { if (new_cache) cache.erase(new_proc.pid); continue; } new_proc.name = cache[new_proc.pid].name; new_proc.cmd = cache[new_proc.pid].cmd; new_proc.user = cache[new_proc.pid].user; //* Parse /proc/[pid]/stat pread.open(d.path() / "stat"); if (pread.good()) { //? Check cached name for whitespace characters and set offset to get correct fields from stat file size_t offset = rng::count(cache.at(new_proc.pid).name, ' '); size_t x = 0, next_x = 3; uint64_t cpu_t = 0; try { while (not pread.eof()) { if (++x > 40 + offset) break; if (x-offset < next_x) { pread.ignore(SSmax, ' '); continue; } else getline(pread, short_str, ' '); switch (x-offset) { case 3: { //? Process state new_proc.state = short_str[0]; break; } case 4: { //? Process parent pid new_proc.ppid = stoull(short_str); next_x = 14; break; } case 14: { //? Process utime cpu_t = stoull(short_str); break; } case 15: { //? Process stime cpu_t += stoull(short_str); next_x = 19; break; } case 19: { //? Process nice value new_proc.p_nice = stoull(short_str); break; } case 20: { //? Process number of threads new_proc.threads = stoull(short_str); next_x = (new_cache) ? 22 : 40; break; } case 22: { //? Cache cpu seconds cache[new_proc.pid].cpu_s = stoull(short_str); next_x = 40; break; } case 40: { //? CPU number last executed on new_proc.cpu_n = stoull(short_str); break; } } } pread.close(); } catch (...) { continue; } if (x-offset < 22) continue; //? Process cpu usage since last update new_proc.cpu_p = round(cmult * 1000 * (cpu_t - cache[new_proc.pid].cpu_t) / (cputimes - old_cputimes)) / 10.0; //? Process cumulative cpu usage since process start new_proc.cpu_c = ((double)cpu_t / Shared::clk_tck) / (uptime - (cache[new_proc.pid].cpu_s / Shared::clk_tck)); //? Update cache with latest cpu times cache[new_proc.pid].cpu_t = cpu_t; } else continue; //* Get RSS memory in bytes from /proc/[pid]/statm pread.open(d.path() / "statm"); if (pread.good()) { pread.ignore(SSmax, ' '); getline(pread, short_str, ' '); pread.close(); new_proc.mem = stoull(short_str) * Shared::page_size; } //? Push process to vector procs.push_back(new_proc); } } //* Sort processes auto cmp = [&reverse](const auto &a, const auto &b) { return (reverse ? a < b : a > b); }; switch (v_index(sort_vector, sorting)) { case 0: { rng::sort(procs, cmp, &proc_info::pid); break; } case 1: { rng::sort(procs, cmp, &proc_info::name); break; } case 2: { rng::sort(procs, cmp, &proc_info::cmd); break; } case 3: { rng::sort(procs, cmp, &proc_info::threads); break; } case 4: { rng::sort(procs, cmp, &proc_info::user); break; } case 5: { rng::sort(procs, cmp, &proc_info::mem); break; } case 6: { rng::sort(procs, cmp, &proc_info::cpu_p); break; } case 7: { rng::sort(procs, cmp, &proc_info::cpu_c); break; } } //* When sorting with "cpu lazy" push processes over threshold cpu usage to the front regardless of cumulative usage if (not tree and not reverse and sorting == "cpu lazy") { double max = 10.0, target = 30.0; for (size_t i = 0, offset = 0; i < procs.size(); i++) { if (i <= 5 and procs[i].cpu_p > max) max = procs[i].cpu_p; else if (i == 6) target = (max > 30.0) ? max : 10.0; if (i == offset and procs[i].cpu_p > 30.0) offset++; else if (procs[i].cpu_p > target) rotate(procs.begin() + offset, procs.begin() + i, procs.begin() + i + 1); } } //* Generate tree view if enabled if (tree) { vector tree_procs; //? Stable sort to retain selected sorting among processes with the same parent rng::stable_sort(procs, rng::less{}, &proc_info::ppid); string prefix = " ├─ "; //? Start recursive iteration over processes with the lowest shared parent pids for (auto& p : rng::equal_range(procs, procs.at(0).ppid, rng::less{}, &proc_info::ppid)) { _tree_gen(p, procs, tree_procs, 0, cache.at(p.pid).collapsed, prefix); } procs.swap(tree_procs); } //* Clear dead processes from cache at a regular interval if (++counter >= 10000 or ((int)cache.size() > npids + 100)) { counter = 0; unordered_flat_map r_cache; r_cache.reserve(procs.size()); rng::for_each(procs, [&r_cache](const auto &p){ if (cache.contains(p.pid)) r_cache[p.pid] = cache.at(p.pid); }); cache.swap(r_cache); } old_cputimes = cputimes; current_procs.swap(procs); numpids = npids; collecting = false; return current_procs; } } #endif