btop/include/fmt/chrono.h

2269 lines
72 KiB
C++

// Formatting library for C++ - chrono support
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_CHRONO_H_
#define FMT_CHRONO_H_
#include <algorithm>
#include <chrono>
#include <cmath> // std::isfinite
#include <cstring> // std::memcpy
#include <ctime>
#include <iterator>
#include <locale>
#include <ostream>
#include <type_traits>
#include "format.h"
FMT_BEGIN_NAMESPACE
// Check if std::chrono::local_t is available.
#ifndef FMT_USE_LOCAL_TIME
# ifdef __cpp_lib_chrono
# define FMT_USE_LOCAL_TIME (__cpp_lib_chrono >= 201907L)
# else
# define FMT_USE_LOCAL_TIME 0
# endif
#endif
// Check if std::chrono::utc_timestamp is available.
#ifndef FMT_USE_UTC_TIME
# ifdef __cpp_lib_chrono
# define FMT_USE_UTC_TIME (__cpp_lib_chrono >= 201907L)
# else
# define FMT_USE_UTC_TIME 0
# endif
#endif
// Enable tzset.
#ifndef FMT_USE_TZSET
// UWP doesn't provide _tzset.
# if FMT_HAS_INCLUDE("winapifamily.h")
# include <winapifamily.h>
# endif
# if defined(_WIN32) && (!defined(WINAPI_FAMILY) || \
(WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP))
# define FMT_USE_TZSET 1
# else
# define FMT_USE_TZSET 0
# endif
#endif
// Enable safe chrono durations, unless explicitly disabled.
#ifndef FMT_SAFE_DURATION_CAST
# define FMT_SAFE_DURATION_CAST 1
#endif
#if FMT_SAFE_DURATION_CAST
// For conversion between std::chrono::durations without undefined
// behaviour or erroneous results.
// This is a stripped down version of duration_cast, for inclusion in fmt.
// See https://github.com/pauldreik/safe_duration_cast
//
// Copyright Paul Dreik 2019
namespace safe_duration_cast {
template <typename To, typename From,
FMT_ENABLE_IF(!std::is_same<From, To>::value &&
std::numeric_limits<From>::is_signed ==
std::numeric_limits<To>::is_signed)>
FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) {
ec = 0;
using F = std::numeric_limits<From>;
using T = std::numeric_limits<To>;
static_assert(F::is_integer, "From must be integral");
static_assert(T::is_integer, "To must be integral");
// A and B are both signed, or both unsigned.
if (detail::const_check(F::digits <= T::digits)) {
// From fits in To without any problem.
} else {
// From does not always fit in To, resort to a dynamic check.
if (from < (T::min)() || from > (T::max)()) {
// outside range.
ec = 1;
return {};
}
}
return static_cast<To>(from);
}
/**
* converts From to To, without loss. If the dynamic value of from
* can't be converted to To without loss, ec is set.
*/
template <typename To, typename From,
FMT_ENABLE_IF(!std::is_same<From, To>::value &&
std::numeric_limits<From>::is_signed !=
std::numeric_limits<To>::is_signed)>
FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) {
ec = 0;
using F = std::numeric_limits<From>;
using T = std::numeric_limits<To>;
static_assert(F::is_integer, "From must be integral");
static_assert(T::is_integer, "To must be integral");
if (detail::const_check(F::is_signed && !T::is_signed)) {
// From may be negative, not allowed!
if (fmt::detail::is_negative(from)) {
ec = 1;
return {};
}
// From is positive. Can it always fit in To?
if (detail::const_check(F::digits > T::digits) &&
from > static_cast<From>(detail::max_value<To>())) {
ec = 1;
return {};
}
}
if (detail::const_check(!F::is_signed && T::is_signed &&
F::digits >= T::digits) &&
from > static_cast<From>(detail::max_value<To>())) {
ec = 1;
return {};
}
return static_cast<To>(from); // Lossless conversion.
}
template <typename To, typename From,
FMT_ENABLE_IF(std::is_same<From, To>::value)>
FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) {
ec = 0;
return from;
} // function
// clang-format off
/**
* converts From to To if possible, otherwise ec is set.
*
* input | output
* ---------------------------------|---------------
* NaN | NaN
* Inf | Inf
* normal, fits in output | converted (possibly lossy)
* normal, does not fit in output | ec is set
* subnormal | best effort
* -Inf | -Inf
*/
// clang-format on
template <typename To, typename From,
FMT_ENABLE_IF(!std::is_same<From, To>::value)>
FMT_CONSTEXPR To safe_float_conversion(const From from, int& ec) {
ec = 0;
using T = std::numeric_limits<To>;
static_assert(std::is_floating_point<From>::value, "From must be floating");
static_assert(std::is_floating_point<To>::value, "To must be floating");
// catch the only happy case
if (std::isfinite(from)) {
if (from >= T::lowest() && from <= (T::max)()) {
return static_cast<To>(from);
}
// not within range.
ec = 1;
return {};
}
// nan and inf will be preserved
return static_cast<To>(from);
} // function
template <typename To, typename From,
FMT_ENABLE_IF(std::is_same<From, To>::value)>
FMT_CONSTEXPR To safe_float_conversion(const From from, int& ec) {
ec = 0;
static_assert(std::is_floating_point<From>::value, "From must be floating");
return from;
}
/**
* safe duration cast between integral durations
*/
template <typename To, typename FromRep, typename FromPeriod,
FMT_ENABLE_IF(std::is_integral<FromRep>::value),
FMT_ENABLE_IF(std::is_integral<typename To::rep>::value)>
To safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from,
int& ec) {
using From = std::chrono::duration<FromRep, FromPeriod>;
ec = 0;
// the basic idea is that we need to convert from count() in the from type
// to count() in the To type, by multiplying it with this:
struct Factor
: std::ratio_divide<typename From::period, typename To::period> {};
static_assert(Factor::num > 0, "num must be positive");
static_assert(Factor::den > 0, "den must be positive");
// the conversion is like this: multiply from.count() with Factor::num
// /Factor::den and convert it to To::rep, all this without
// overflow/underflow. let's start by finding a suitable type that can hold
// both To, From and Factor::num
using IntermediateRep =
typename std::common_type<typename From::rep, typename To::rep,
decltype(Factor::num)>::type;
// safe conversion to IntermediateRep
IntermediateRep count =
lossless_integral_conversion<IntermediateRep>(from.count(), ec);
if (ec) return {};
// multiply with Factor::num without overflow or underflow
if (detail::const_check(Factor::num != 1)) {
const auto max1 = detail::max_value<IntermediateRep>() / Factor::num;
if (count > max1) {
ec = 1;
return {};
}
const auto min1 =
(std::numeric_limits<IntermediateRep>::min)() / Factor::num;
if (detail::const_check(!std::is_unsigned<IntermediateRep>::value) &&
count < min1) {
ec = 1;
return {};
}
count *= Factor::num;
}
if (detail::const_check(Factor::den != 1)) count /= Factor::den;
auto tocount = lossless_integral_conversion<typename To::rep>(count, ec);
return ec ? To() : To(tocount);
}
/**
* safe duration_cast between floating point durations
*/
template <typename To, typename FromRep, typename FromPeriod,
FMT_ENABLE_IF(std::is_floating_point<FromRep>::value),
FMT_ENABLE_IF(std::is_floating_point<typename To::rep>::value)>
To safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from,
int& ec) {
using From = std::chrono::duration<FromRep, FromPeriod>;
ec = 0;
if (std::isnan(from.count())) {
// nan in, gives nan out. easy.
return To{std::numeric_limits<typename To::rep>::quiet_NaN()};
}
// maybe we should also check if from is denormal, and decide what to do about
// it.
// +-inf should be preserved.
if (std::isinf(from.count())) {
return To{from.count()};
}
// the basic idea is that we need to convert from count() in the from type
// to count() in the To type, by multiplying it with this:
struct Factor
: std::ratio_divide<typename From::period, typename To::period> {};
static_assert(Factor::num > 0, "num must be positive");
static_assert(Factor::den > 0, "den must be positive");
// the conversion is like this: multiply from.count() with Factor::num
// /Factor::den and convert it to To::rep, all this without
// overflow/underflow. let's start by finding a suitable type that can hold
// both To, From and Factor::num
using IntermediateRep =
typename std::common_type<typename From::rep, typename To::rep,
decltype(Factor::num)>::type;
// force conversion of From::rep -> IntermediateRep to be safe,
// even if it will never happen be narrowing in this context.
IntermediateRep count =
safe_float_conversion<IntermediateRep>(from.count(), ec);
if (ec) {
return {};
}
// multiply with Factor::num without overflow or underflow
if (detail::const_check(Factor::num != 1)) {
constexpr auto max1 = detail::max_value<IntermediateRep>() /
static_cast<IntermediateRep>(Factor::num);
if (count > max1) {
ec = 1;
return {};
}
constexpr auto min1 = std::numeric_limits<IntermediateRep>::lowest() /
static_cast<IntermediateRep>(Factor::num);
if (count < min1) {
ec = 1;
return {};
}
count *= static_cast<IntermediateRep>(Factor::num);
}
// this can't go wrong, right? den>0 is checked earlier.
if (detail::const_check(Factor::den != 1)) {
using common_t = typename std::common_type<IntermediateRep, intmax_t>::type;
count /= static_cast<common_t>(Factor::den);
}
// convert to the to type, safely
using ToRep = typename To::rep;
const ToRep tocount = safe_float_conversion<ToRep>(count, ec);
if (ec) {
return {};
}
return To{tocount};
}
} // namespace safe_duration_cast
#endif
// Prevents expansion of a preceding token as a function-style macro.
// Usage: f FMT_NOMACRO()
#define FMT_NOMACRO
namespace detail {
template <typename T = void> struct null {};
inline null<> localtime_r FMT_NOMACRO(...) { return null<>(); }
inline null<> localtime_s(...) { return null<>(); }
inline null<> gmtime_r(...) { return null<>(); }
inline null<> gmtime_s(...) { return null<>(); }
inline const std::locale& get_classic_locale() {
static const auto& locale = std::locale::classic();
return locale;
}
template <typename CodeUnit> struct codecvt_result {
static constexpr const size_t max_size = 32;
CodeUnit buf[max_size];
CodeUnit* end;
};
template <typename CodeUnit>
constexpr const size_t codecvt_result<CodeUnit>::max_size;
template <typename CodeUnit>
void write_codecvt(codecvt_result<CodeUnit>& out, string_view in_buf,
const std::locale& loc) {
#if FMT_CLANG_VERSION
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated"
auto& f = std::use_facet<std::codecvt<CodeUnit, char, std::mbstate_t>>(loc);
# pragma clang diagnostic pop
#else
auto& f = std::use_facet<std::codecvt<CodeUnit, char, std::mbstate_t>>(loc);
#endif
auto mb = std::mbstate_t();
const char* from_next = nullptr;
auto result = f.in(mb, in_buf.begin(), in_buf.end(), from_next,
std::begin(out.buf), std::end(out.buf), out.end);
if (result != std::codecvt_base::ok)
FMT_THROW(format_error("failed to format time"));
}
template <typename OutputIt>
auto write_encoded_tm_str(OutputIt out, string_view in, const std::locale& loc)
-> OutputIt {
if (detail::is_utf8() && loc != get_classic_locale()) {
// char16_t and char32_t codecvts are broken in MSVC (linkage errors) and
// gcc-4.
#if FMT_MSC_VERSION != 0 || \
(defined(__GLIBCXX__) && !defined(_GLIBCXX_USE_DUAL_ABI))
// The _GLIBCXX_USE_DUAL_ABI macro is always defined in libstdc++ from gcc-5
// and newer.
using code_unit = wchar_t;
#else
using code_unit = char32_t;
#endif
using unit_t = codecvt_result<code_unit>;
unit_t unit;
write_codecvt(unit, in, loc);
// In UTF-8 is used one to four one-byte code units.
auto u =
to_utf8<code_unit, basic_memory_buffer<char, unit_t::max_size * 4>>();
if (!u.convert({unit.buf, to_unsigned(unit.end - unit.buf)}))
FMT_THROW(format_error("failed to format time"));
return copy_str<char>(u.c_str(), u.c_str() + u.size(), out);
}
return copy_str<char>(in.data(), in.data() + in.size(), out);
}
template <typename Char, typename OutputIt,
FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
auto write_tm_str(OutputIt out, string_view sv, const std::locale& loc)
-> OutputIt {
codecvt_result<Char> unit;
write_codecvt(unit, sv, loc);
return copy_str<Char>(unit.buf, unit.end, out);
}
template <typename Char, typename OutputIt,
FMT_ENABLE_IF(std::is_same<Char, char>::value)>
auto write_tm_str(OutputIt out, string_view sv, const std::locale& loc)
-> OutputIt {
return write_encoded_tm_str(out, sv, loc);
}
template <typename Char>
inline void do_write(buffer<Char>& buf, const std::tm& time,
const std::locale& loc, char format, char modifier) {
auto&& format_buf = formatbuf<std::basic_streambuf<Char>>(buf);
auto&& os = std::basic_ostream<Char>(&format_buf);
os.imbue(loc);
using iterator = std::ostreambuf_iterator<Char>;
const auto& facet = std::use_facet<std::time_put<Char, iterator>>(loc);
auto end = facet.put(os, os, Char(' '), &time, format, modifier);
if (end.failed()) FMT_THROW(format_error("failed to format time"));
}
template <typename Char, typename OutputIt,
FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
auto write(OutputIt out, const std::tm& time, const std::locale& loc,
char format, char modifier = 0) -> OutputIt {
auto&& buf = get_buffer<Char>(out);
do_write<Char>(buf, time, loc, format, modifier);
return get_iterator(buf, out);
}
template <typename Char, typename OutputIt,
FMT_ENABLE_IF(std::is_same<Char, char>::value)>
auto write(OutputIt out, const std::tm& time, const std::locale& loc,
char format, char modifier = 0) -> OutputIt {
auto&& buf = basic_memory_buffer<Char>();
do_write<char>(buf, time, loc, format, modifier);
return write_encoded_tm_str(out, string_view(buf.data(), buf.size()), loc);
}
} // namespace detail
FMT_BEGIN_EXPORT
/**
Converts given time since epoch as ``std::time_t`` value into calendar time,
expressed in local time. Unlike ``std::localtime``, this function is
thread-safe on most platforms.
*/
inline std::tm localtime(std::time_t time) {
struct dispatcher {
std::time_t time_;
std::tm tm_;
dispatcher(std::time_t t) : time_(t) {}
bool run() {
using namespace fmt::detail;
return handle(localtime_r(&time_, &tm_));
}
bool handle(std::tm* tm) { return tm != nullptr; }
bool handle(detail::null<>) {
using namespace fmt::detail;
return fallback(localtime_s(&tm_, &time_));
}
bool fallback(int res) { return res == 0; }
#if !FMT_MSC_VERSION
bool fallback(detail::null<>) {
using namespace fmt::detail;
std::tm* tm = std::localtime(&time_);
if (tm) tm_ = *tm;
return tm != nullptr;
}
#endif
};
dispatcher lt(time);
// Too big time values may be unsupported.
if (!lt.run()) FMT_THROW(format_error("time_t value out of range"));
return lt.tm_;
}
#if FMT_USE_LOCAL_TIME
template <typename Duration>
inline auto localtime(std::chrono::local_time<Duration> time) -> std::tm {
return localtime(std::chrono::system_clock::to_time_t(
std::chrono::current_zone()->to_sys(time)));
}
#endif
/**
Converts given time since epoch as ``std::time_t`` value into calendar time,
expressed in Coordinated Universal Time (UTC). Unlike ``std::gmtime``, this
function is thread-safe on most platforms.
*/
inline std::tm gmtime(std::time_t time) {
struct dispatcher {
std::time_t time_;
std::tm tm_;
dispatcher(std::time_t t) : time_(t) {}
bool run() {
using namespace fmt::detail;
return handle(gmtime_r(&time_, &tm_));
}
bool handle(std::tm* tm) { return tm != nullptr; }
bool handle(detail::null<>) {
using namespace fmt::detail;
return fallback(gmtime_s(&tm_, &time_));
}
bool fallback(int res) { return res == 0; }
#if !FMT_MSC_VERSION
bool fallback(detail::null<>) {
std::tm* tm = std::gmtime(&time_);
if (tm) tm_ = *tm;
return tm != nullptr;
}
#endif
};
dispatcher gt(time);
// Too big time values may be unsupported.
if (!gt.run()) FMT_THROW(format_error("time_t value out of range"));
return gt.tm_;
}
inline std::tm gmtime(
std::chrono::time_point<std::chrono::system_clock> time_point) {
return gmtime(std::chrono::system_clock::to_time_t(time_point));
}
FMT_BEGIN_DETAIL_NAMESPACE
// DEPRECATED!
template <typename Char>
FMT_CONSTEXPR auto parse_align(const Char* begin, const Char* end,
format_specs<Char>& specs) -> const Char* {
FMT_ASSERT(begin != end, "");
auto align = align::none;
auto p = begin + code_point_length(begin);
if (end - p <= 0) p = begin;
for (;;) {
switch (to_ascii(*p)) {
case '<':
align = align::left;
break;
case '>':
align = align::right;
break;
case '^':
align = align::center;
break;
}
if (align != align::none) {
if (p != begin) {
auto c = *begin;
if (c == '}') return begin;
if (c == '{') {
throw_format_error("invalid fill character '{'");
return begin;
}
specs.fill = {begin, to_unsigned(p - begin)};
begin = p + 1;
} else {
++begin;
}
break;
} else if (p == begin) {
break;
}
p = begin;
}
specs.align = align;
return begin;
}
// Writes two-digit numbers a, b and c separated by sep to buf.
// The method by Pavel Novikov based on
// https://johnnylee-sde.github.io/Fast-unsigned-integer-to-time-string/.
inline void write_digit2_separated(char* buf, unsigned a, unsigned b,
unsigned c, char sep) {
unsigned long long digits =
a | (b << 24) | (static_cast<unsigned long long>(c) << 48);
// Convert each value to BCD.
// We have x = a * 10 + b and we want to convert it to BCD y = a * 16 + b.
// The difference is
// y - x = a * 6
// a can be found from x:
// a = floor(x / 10)
// then
// y = x + a * 6 = x + floor(x / 10) * 6
// floor(x / 10) is (x * 205) >> 11 (needs 16 bits).
digits += (((digits * 205) >> 11) & 0x000f00000f00000f) * 6;
// Put low nibbles to high bytes and high nibbles to low bytes.
digits = ((digits & 0x00f00000f00000f0) >> 4) |
((digits & 0x000f00000f00000f) << 8);
auto usep = static_cast<unsigned long long>(sep);
// Add ASCII '0' to each digit byte and insert separators.
digits |= 0x3030003030003030 | (usep << 16) | (usep << 40);
constexpr const size_t len = 8;
if (const_check(is_big_endian())) {
char tmp[len];
std::memcpy(tmp, &digits, len);
std::reverse_copy(tmp, tmp + len, buf);
} else {
std::memcpy(buf, &digits, len);
}
}
template <typename Period> FMT_CONSTEXPR inline const char* get_units() {
if (std::is_same<Period, std::atto>::value) return "as";
if (std::is_same<Period, std::femto>::value) return "fs";
if (std::is_same<Period, std::pico>::value) return "ps";
if (std::is_same<Period, std::nano>::value) return "ns";
if (std::is_same<Period, std::micro>::value) return "µs";
if (std::is_same<Period, std::milli>::value) return "ms";
if (std::is_same<Period, std::centi>::value) return "cs";
if (std::is_same<Period, std::deci>::value) return "ds";
if (std::is_same<Period, std::ratio<1>>::value) return "s";
if (std::is_same<Period, std::deca>::value) return "das";
if (std::is_same<Period, std::hecto>::value) return "hs";
if (std::is_same<Period, std::kilo>::value) return "ks";
if (std::is_same<Period, std::mega>::value) return "Ms";
if (std::is_same<Period, std::giga>::value) return "Gs";
if (std::is_same<Period, std::tera>::value) return "Ts";
if (std::is_same<Period, std::peta>::value) return "Ps";
if (std::is_same<Period, std::exa>::value) return "Es";
if (std::is_same<Period, std::ratio<60>>::value) return "m";
if (std::is_same<Period, std::ratio<3600>>::value) return "h";
return nullptr;
}
enum class numeric_system {
standard,
// Alternative numeric system, e.g. 十二 instead of 12 in ja_JP locale.
alternative
};
// Glibc extensions for formatting numeric values.
enum class pad_type {
unspecified,
// Do not pad a numeric result string.
none,
// Pad a numeric result string with zeros even if the conversion specifier
// character uses space-padding by default.
zero,
// Pad a numeric result string with spaces.
space,
};
template <typename OutputIt>
auto write_padding(OutputIt out, pad_type pad, int width) -> OutputIt {
if (pad == pad_type::none) return out;
return std::fill_n(out, width, pad == pad_type::space ? ' ' : '0');
}
template <typename OutputIt>
auto write_padding(OutputIt out, pad_type pad) -> OutputIt {
if (pad != pad_type::none) *out++ = pad == pad_type::space ? ' ' : '0';
return out;
}
// Parses a put_time-like format string and invokes handler actions.
template <typename Char, typename Handler>
FMT_CONSTEXPR const Char* parse_chrono_format(const Char* begin,
const Char* end,
Handler&& handler) {
if (begin == end || *begin == '}') return begin;
if (*begin != '%') FMT_THROW(format_error("invalid format"));
auto ptr = begin;
pad_type pad = pad_type::unspecified;
while (ptr != end) {
auto c = *ptr;
if (c == '}') break;
if (c != '%') {
++ptr;
continue;
}
if (begin != ptr) handler.on_text(begin, ptr);
++ptr; // consume '%'
if (ptr == end) FMT_THROW(format_error("invalid format"));
c = *ptr;
switch (c) {
case '_':
pad = pad_type::space;
++ptr;
break;
case '-':
pad = pad_type::none;
++ptr;
break;
case '0':
pad = pad_type::zero;
++ptr;
break;
}
if (ptr == end) FMT_THROW(format_error("invalid format"));
c = *ptr++;
switch (c) {
case '%':
handler.on_text(ptr - 1, ptr);
break;
case 'n': {
const Char newline[] = {'\n'};
handler.on_text(newline, newline + 1);
break;
}
case 't': {
const Char tab[] = {'\t'};
handler.on_text(tab, tab + 1);
break;
}
// Year:
case 'Y':
handler.on_year(numeric_system::standard);
break;
case 'y':
handler.on_short_year(numeric_system::standard);
break;
case 'C':
handler.on_century(numeric_system::standard);
break;
case 'G':
handler.on_iso_week_based_year();
break;
case 'g':
handler.on_iso_week_based_short_year();
break;
// Day of the week:
case 'a':
handler.on_abbr_weekday();
break;
case 'A':
handler.on_full_weekday();
break;
case 'w':
handler.on_dec0_weekday(numeric_system::standard);
break;
case 'u':
handler.on_dec1_weekday(numeric_system::standard);
break;
// Month:
case 'b':
case 'h':
handler.on_abbr_month();
break;
case 'B':
handler.on_full_month();
break;
case 'm':
handler.on_dec_month(numeric_system::standard);
break;
// Day of the year/month:
case 'U':
handler.on_dec0_week_of_year(numeric_system::standard);
break;
case 'W':
handler.on_dec1_week_of_year(numeric_system::standard);
break;
case 'V':
handler.on_iso_week_of_year(numeric_system::standard);
break;
case 'j':
handler.on_day_of_year();
break;
case 'd':
handler.on_day_of_month(numeric_system::standard);
break;
case 'e':
handler.on_day_of_month_space(numeric_system::standard);
break;
// Hour, minute, second:
case 'H':
handler.on_24_hour(numeric_system::standard, pad);
break;
case 'I':
handler.on_12_hour(numeric_system::standard, pad);
break;
case 'M':
handler.on_minute(numeric_system::standard, pad);
break;
case 'S':
handler.on_second(numeric_system::standard, pad);
break;
// Other:
case 'c':
handler.on_datetime(numeric_system::standard);
break;
case 'x':
handler.on_loc_date(numeric_system::standard);
break;
case 'X':
handler.on_loc_time(numeric_system::standard);
break;
case 'D':
handler.on_us_date();
break;
case 'F':
handler.on_iso_date();
break;
case 'r':
handler.on_12_hour_time();
break;
case 'R':
handler.on_24_hour_time();
break;
case 'T':
handler.on_iso_time();
break;
case 'p':
handler.on_am_pm();
break;
case 'Q':
handler.on_duration_value();
break;
case 'q':
handler.on_duration_unit();
break;
case 'z':
handler.on_utc_offset(numeric_system::standard);
break;
case 'Z':
handler.on_tz_name();
break;
// Alternative representation:
case 'E': {
if (ptr == end) FMT_THROW(format_error("invalid format"));
c = *ptr++;
switch (c) {
case 'Y':
handler.on_year(numeric_system::alternative);
break;
case 'y':
handler.on_offset_year();
break;
case 'C':
handler.on_century(numeric_system::alternative);
break;
case 'c':
handler.on_datetime(numeric_system::alternative);
break;
case 'x':
handler.on_loc_date(numeric_system::alternative);
break;
case 'X':
handler.on_loc_time(numeric_system::alternative);
break;
case 'z':
handler.on_utc_offset(numeric_system::alternative);
break;
default:
FMT_THROW(format_error("invalid format"));
}
break;
}
case 'O':
if (ptr == end) FMT_THROW(format_error("invalid format"));
c = *ptr++;
switch (c) {
case 'y':
handler.on_short_year(numeric_system::alternative);
break;
case 'm':
handler.on_dec_month(numeric_system::alternative);
break;
case 'U':
handler.on_dec0_week_of_year(numeric_system::alternative);
break;
case 'W':
handler.on_dec1_week_of_year(numeric_system::alternative);
break;
case 'V':
handler.on_iso_week_of_year(numeric_system::alternative);
break;
case 'd':
handler.on_day_of_month(numeric_system::alternative);
break;
case 'e':
handler.on_day_of_month_space(numeric_system::alternative);
break;
case 'w':
handler.on_dec0_weekday(numeric_system::alternative);
break;
case 'u':
handler.on_dec1_weekday(numeric_system::alternative);
break;
case 'H':
handler.on_24_hour(numeric_system::alternative, pad);
break;
case 'I':
handler.on_12_hour(numeric_system::alternative, pad);
break;
case 'M':
handler.on_minute(numeric_system::alternative, pad);
break;
case 'S':
handler.on_second(numeric_system::alternative, pad);
break;
case 'z':
handler.on_utc_offset(numeric_system::alternative);
break;
default:
FMT_THROW(format_error("invalid format"));
}
break;
default:
FMT_THROW(format_error("invalid format"));
}
begin = ptr;
}
if (begin != ptr) handler.on_text(begin, ptr);
return ptr;
}
template <typename Derived> struct null_chrono_spec_handler {
FMT_CONSTEXPR void unsupported() {
static_cast<Derived*>(this)->unsupported();
}
FMT_CONSTEXPR void on_year(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_short_year(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_offset_year() { unsupported(); }
FMT_CONSTEXPR void on_century(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_iso_week_based_year() { unsupported(); }
FMT_CONSTEXPR void on_iso_week_based_short_year() { unsupported(); }
FMT_CONSTEXPR void on_abbr_weekday() { unsupported(); }
FMT_CONSTEXPR void on_full_weekday() { unsupported(); }
FMT_CONSTEXPR void on_dec0_weekday(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_dec1_weekday(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_abbr_month() { unsupported(); }
FMT_CONSTEXPR void on_full_month() { unsupported(); }
FMT_CONSTEXPR void on_dec_month(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_dec0_week_of_year(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_dec1_week_of_year(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_iso_week_of_year(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_day_of_year() { unsupported(); }
FMT_CONSTEXPR void on_day_of_month(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_day_of_month_space(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_24_hour(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_12_hour(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_minute(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_second(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_datetime(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_loc_date(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_loc_time(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_us_date() { unsupported(); }
FMT_CONSTEXPR void on_iso_date() { unsupported(); }
FMT_CONSTEXPR void on_12_hour_time() { unsupported(); }
FMT_CONSTEXPR void on_24_hour_time() { unsupported(); }
FMT_CONSTEXPR void on_iso_time() { unsupported(); }
FMT_CONSTEXPR void on_am_pm() { unsupported(); }
FMT_CONSTEXPR void on_duration_value() { unsupported(); }
FMT_CONSTEXPR void on_duration_unit() { unsupported(); }
FMT_CONSTEXPR void on_utc_offset(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_tz_name() { unsupported(); }
};
struct tm_format_checker : null_chrono_spec_handler<tm_format_checker> {
FMT_NORETURN void unsupported() { FMT_THROW(format_error("no format")); }
template <typename Char>
FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
FMT_CONSTEXPR void on_year(numeric_system) {}
FMT_CONSTEXPR void on_short_year(numeric_system) {}
FMT_CONSTEXPR void on_offset_year() {}
FMT_CONSTEXPR void on_century(numeric_system) {}
FMT_CONSTEXPR void on_iso_week_based_year() {}
FMT_CONSTEXPR void on_iso_week_based_short_year() {}
FMT_CONSTEXPR void on_abbr_weekday() {}
FMT_CONSTEXPR void on_full_weekday() {}
FMT_CONSTEXPR void on_dec0_weekday(numeric_system) {}
FMT_CONSTEXPR void on_dec1_weekday(numeric_system) {}
FMT_CONSTEXPR void on_abbr_month() {}
FMT_CONSTEXPR void on_full_month() {}
FMT_CONSTEXPR void on_dec_month(numeric_system) {}
FMT_CONSTEXPR void on_dec0_week_of_year(numeric_system) {}
FMT_CONSTEXPR void on_dec1_week_of_year(numeric_system) {}
FMT_CONSTEXPR void on_iso_week_of_year(numeric_system) {}
FMT_CONSTEXPR void on_day_of_year() {}
FMT_CONSTEXPR void on_day_of_month(numeric_system) {}
FMT_CONSTEXPR void on_day_of_month_space(numeric_system) {}
FMT_CONSTEXPR void on_24_hour(numeric_system, pad_type) {}
FMT_CONSTEXPR void on_12_hour(numeric_system, pad_type) {}
FMT_CONSTEXPR void on_minute(numeric_system, pad_type) {}
FMT_CONSTEXPR void on_second(numeric_system, pad_type) {}
FMT_CONSTEXPR void on_datetime(numeric_system) {}
FMT_CONSTEXPR void on_loc_date(numeric_system) {}
FMT_CONSTEXPR void on_loc_time(numeric_system) {}
FMT_CONSTEXPR void on_us_date() {}
FMT_CONSTEXPR void on_iso_date() {}
FMT_CONSTEXPR void on_12_hour_time() {}
FMT_CONSTEXPR void on_24_hour_time() {}
FMT_CONSTEXPR void on_iso_time() {}
FMT_CONSTEXPR void on_am_pm() {}
FMT_CONSTEXPR void on_utc_offset(numeric_system) {}
FMT_CONSTEXPR void on_tz_name() {}
};
inline const char* tm_wday_full_name(int wday) {
static constexpr const char* full_name_list[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"};
return wday >= 0 && wday <= 6 ? full_name_list[wday] : "?";
}
inline const char* tm_wday_short_name(int wday) {
static constexpr const char* short_name_list[] = {"Sun", "Mon", "Tue", "Wed",
"Thu", "Fri", "Sat"};
return wday >= 0 && wday <= 6 ? short_name_list[wday] : "???";
}
inline const char* tm_mon_full_name(int mon) {
static constexpr const char* full_name_list[] = {
"January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"};
return mon >= 0 && mon <= 11 ? full_name_list[mon] : "?";
}
inline const char* tm_mon_short_name(int mon) {
static constexpr const char* short_name_list[] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec",
};
return mon >= 0 && mon <= 11 ? short_name_list[mon] : "???";
}
template <typename T, typename = void>
struct has_member_data_tm_gmtoff : std::false_type {};
template <typename T>
struct has_member_data_tm_gmtoff<T, void_t<decltype(T::tm_gmtoff)>>
: std::true_type {};
template <typename T, typename = void>
struct has_member_data_tm_zone : std::false_type {};
template <typename T>
struct has_member_data_tm_zone<T, void_t<decltype(T::tm_zone)>>
: std::true_type {};
#if FMT_USE_TZSET
inline void tzset_once() {
static bool init = []() -> bool {
_tzset();
return true;
}();
ignore_unused(init);
}
#endif
// Converts value to Int and checks that it's in the range [0, upper).
template <typename T, typename Int, FMT_ENABLE_IF(std::is_integral<T>::value)>
inline Int to_nonnegative_int(T value, Int upper) {
FMT_ASSERT(std::is_unsigned<Int>::value ||
(value >= 0 && to_unsigned(value) <= to_unsigned(upper)),
"invalid value");
(void)upper;
return static_cast<Int>(value);
}
template <typename T, typename Int, FMT_ENABLE_IF(!std::is_integral<T>::value)>
inline Int to_nonnegative_int(T value, Int upper) {
if (value < 0 || value > static_cast<T>(upper))
FMT_THROW(format_error("invalid value"));
return static_cast<Int>(value);
}
constexpr long long pow10(std::uint32_t n) {
return n == 0 ? 1 : 10 * pow10(n - 1);
}
// Counts the number of fractional digits in the range [0, 18] according to the
// C++20 spec. If more than 18 fractional digits are required then returns 6 for
// microseconds precision.
template <long long Num, long long Den, int N = 0,
bool Enabled = (N < 19) && (Num <= max_value<long long>() / 10)>
struct count_fractional_digits {
static constexpr int value =
Num % Den == 0 ? N : count_fractional_digits<Num * 10, Den, N + 1>::value;
};
// Base case that doesn't instantiate any more templates
// in order to avoid overflow.
template <long long Num, long long Den, int N>
struct count_fractional_digits<Num, Den, N, false> {
static constexpr int value = (Num % Den == 0) ? N : 6;
};
// Format subseconds which are given as an integer type with an appropriate
// number of digits.
template <typename Char, typename OutputIt, typename Duration>
void write_fractional_seconds(OutputIt& out, Duration d, int precision = -1) {
constexpr auto num_fractional_digits =
count_fractional_digits<Duration::period::num,
Duration::period::den>::value;
using subsecond_precision = std::chrono::duration<
typename std::common_type<typename Duration::rep,
std::chrono::seconds::rep>::type,
std::ratio<1, detail::pow10(num_fractional_digits)>>;
const auto fractional =
d - std::chrono::duration_cast<std::chrono::seconds>(d);
const auto subseconds =
std::chrono::treat_as_floating_point<
typename subsecond_precision::rep>::value
? fractional.count()
: std::chrono::duration_cast<subsecond_precision>(fractional).count();
auto n = static_cast<uint32_or_64_or_128_t<long long>>(subseconds);
const int num_digits = detail::count_digits(n);
int leading_zeroes = (std::max)(0, num_fractional_digits - num_digits);
if (precision < 0) {
FMT_ASSERT(!std::is_floating_point<typename Duration::rep>::value, "");
if (std::ratio_less<typename subsecond_precision::period,
std::chrono::seconds::period>::value) {
*out++ = '.';
out = std::fill_n(out, leading_zeroes, '0');
out = format_decimal<Char>(out, n, num_digits).end;
}
} else {
*out++ = '.';
leading_zeroes = (std::min)(leading_zeroes, precision);
out = std::fill_n(out, leading_zeroes, '0');
int remaining = precision - leading_zeroes;
if (remaining != 0 && remaining < num_digits) {
n /= to_unsigned(detail::pow10(to_unsigned(num_digits - remaining)));
out = format_decimal<Char>(out, n, remaining).end;
return;
}
out = format_decimal<Char>(out, n, num_digits).end;
remaining -= num_digits;
out = std::fill_n(out, remaining, '0');
}
}
// Format subseconds which are given as a floating point type with an
// appropriate number of digits. We cannot pass the Duration here, as we
// explicitly need to pass the Rep value in the chrono_formatter.
template <typename Duration>
void write_floating_seconds(memory_buffer& buf, Duration duration,
int num_fractional_digits = -1) {
using rep = typename Duration::rep;
FMT_ASSERT(std::is_floating_point<rep>::value, "");
auto val = duration.count();
if (num_fractional_digits < 0) {
// For `std::round` with fallback to `round`:
// On some toolchains `std::round` is not available (e.g. GCC 6).
using namespace std;
num_fractional_digits =
count_fractional_digits<Duration::period::num,
Duration::period::den>::value;
if (num_fractional_digits < 6 && static_cast<rep>(round(val)) != val)
num_fractional_digits = 6;
}
format_to(std::back_inserter(buf), FMT_STRING("{:.{}f}"),
std::fmod(val * static_cast<rep>(Duration::period::num) /
static_cast<rep>(Duration::period::den),
static_cast<rep>(60)),
num_fractional_digits);
}
template <typename OutputIt, typename Char,
typename Duration = std::chrono::seconds>
class tm_writer {
private:
static constexpr int days_per_week = 7;
const std::locale& loc_;
const bool is_classic_;
OutputIt out_;
const Duration* subsecs_;
const std::tm& tm_;
auto tm_sec() const noexcept -> int {
FMT_ASSERT(tm_.tm_sec >= 0 && tm_.tm_sec <= 61, "");
return tm_.tm_sec;
}
auto tm_min() const noexcept -> int {
FMT_ASSERT(tm_.tm_min >= 0 && tm_.tm_min <= 59, "");
return tm_.tm_min;
}
auto tm_hour() const noexcept -> int {
FMT_ASSERT(tm_.tm_hour >= 0 && tm_.tm_hour <= 23, "");
return tm_.tm_hour;
}
auto tm_mday() const noexcept -> int {
FMT_ASSERT(tm_.tm_mday >= 1 && tm_.tm_mday <= 31, "");
return tm_.tm_mday;
}
auto tm_mon() const noexcept -> int {
FMT_ASSERT(tm_.tm_mon >= 0 && tm_.tm_mon <= 11, "");
return tm_.tm_mon;
}
auto tm_year() const noexcept -> long long { return 1900ll + tm_.tm_year; }
auto tm_wday() const noexcept -> int {
FMT_ASSERT(tm_.tm_wday >= 0 && tm_.tm_wday <= 6, "");
return tm_.tm_wday;
}
auto tm_yday() const noexcept -> int {
FMT_ASSERT(tm_.tm_yday >= 0 && tm_.tm_yday <= 365, "");
return tm_.tm_yday;
}
auto tm_hour12() const noexcept -> int {
const auto h = tm_hour();
const auto z = h < 12 ? h : h - 12;
return z == 0 ? 12 : z;
}
// POSIX and the C Standard are unclear or inconsistent about what %C and %y
// do if the year is negative or exceeds 9999. Use the convention that %C
// concatenated with %y yields the same output as %Y, and that %Y contains at
// least 4 characters, with more only if necessary.
auto split_year_lower(long long year) const noexcept -> int {
auto l = year % 100;
if (l < 0) l = -l; // l in [0, 99]
return static_cast<int>(l);
}
// Algorithm:
// https://en.wikipedia.org/wiki/ISO_week_date#Calculating_the_week_number_from_a_month_and_day_of_the_month_or_ordinal_date
auto iso_year_weeks(long long curr_year) const noexcept -> int {
const auto prev_year = curr_year - 1;
const auto curr_p =
(curr_year + curr_year / 4 - curr_year / 100 + curr_year / 400) %
days_per_week;
const auto prev_p =
(prev_year + prev_year / 4 - prev_year / 100 + prev_year / 400) %
days_per_week;
return 52 + ((curr_p == 4 || prev_p == 3) ? 1 : 0);
}
auto iso_week_num(int tm_yday, int tm_wday) const noexcept -> int {
return (tm_yday + 11 - (tm_wday == 0 ? days_per_week : tm_wday)) /
days_per_week;
}
auto tm_iso_week_year() const noexcept -> long long {
const auto year = tm_year();
const auto w = iso_week_num(tm_yday(), tm_wday());
if (w < 1) return year - 1;
if (w > iso_year_weeks(year)) return year + 1;
return year;
}
auto tm_iso_week_of_year() const noexcept -> int {
const auto year = tm_year();
const auto w = iso_week_num(tm_yday(), tm_wday());
if (w < 1) return iso_year_weeks(year - 1);
if (w > iso_year_weeks(year)) return 1;
return w;
}
void write1(int value) {
*out_++ = static_cast<char>('0' + to_unsigned(value) % 10);
}
void write2(int value) {
const char* d = digits2(to_unsigned(value) % 100);
*out_++ = *d++;
*out_++ = *d;
}
void write2(int value, pad_type pad) {
unsigned int v = to_unsigned(value) % 100;
if (v >= 10) {
const char* d = digits2(v);
*out_++ = *d++;
*out_++ = *d;
} else {
out_ = detail::write_padding(out_, pad);
*out_++ = static_cast<char>('0' + v);
}
}
void write_year_extended(long long year) {
// At least 4 characters.
int width = 4;
if (year < 0) {
*out_++ = '-';
year = 0 - year;
--width;
}
uint32_or_64_or_128_t<long long> n = to_unsigned(year);
const int num_digits = count_digits(n);
if (width > num_digits) out_ = std::fill_n(out_, width - num_digits, '0');
out_ = format_decimal<Char>(out_, n, num_digits).end;
}
void write_year(long long year) {
if (year >= 0 && year < 10000) {
write2(static_cast<int>(year / 100));
write2(static_cast<int>(year % 100));
} else {
write_year_extended(year);
}
}
void write_utc_offset(long offset, numeric_system ns) {
if (offset < 0) {
*out_++ = '-';
offset = -offset;
} else {
*out_++ = '+';
}
offset /= 60;
write2(static_cast<int>(offset / 60));
if (ns != numeric_system::standard) *out_++ = ':';
write2(static_cast<int>(offset % 60));
}
template <typename T, FMT_ENABLE_IF(has_member_data_tm_gmtoff<T>::value)>
void format_utc_offset_impl(const T& tm, numeric_system ns) {
write_utc_offset(tm.tm_gmtoff, ns);
}
template <typename T, FMT_ENABLE_IF(!has_member_data_tm_gmtoff<T>::value)>
void format_utc_offset_impl(const T& tm, numeric_system ns) {
#if defined(_WIN32) && defined(_UCRT)
# if FMT_USE_TZSET
tzset_once();
# endif
long offset = 0;
_get_timezone(&offset);
if (tm.tm_isdst) {
long dstbias = 0;
_get_dstbias(&dstbias);
offset += dstbias;
}
write_utc_offset(-offset, ns);
#else
if (ns == numeric_system::standard) return format_localized('z');
// Extract timezone offset from timezone conversion functions.
std::tm gtm = tm;
std::time_t gt = std::mktime(&gtm);
std::tm ltm = gmtime(gt);
std::time_t lt = std::mktime(&ltm);
long offset = gt - lt;
write_utc_offset(offset, ns);
#endif
}
template <typename T, FMT_ENABLE_IF(has_member_data_tm_zone<T>::value)>
void format_tz_name_impl(const T& tm) {
if (is_classic_)
out_ = write_tm_str<Char>(out_, tm.tm_zone, loc_);
else
format_localized('Z');
}
template <typename T, FMT_ENABLE_IF(!has_member_data_tm_zone<T>::value)>
void format_tz_name_impl(const T&) {
format_localized('Z');
}
void format_localized(char format, char modifier = 0) {
out_ = write<Char>(out_, tm_, loc_, format, modifier);
}
public:
tm_writer(const std::locale& loc, OutputIt out, const std::tm& tm,
const Duration* subsecs = nullptr)
: loc_(loc),
is_classic_(loc_ == get_classic_locale()),
out_(out),
subsecs_(subsecs),
tm_(tm) {}
OutputIt out() const { return out_; }
FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) {
out_ = copy_str<Char>(begin, end, out_);
}
void on_abbr_weekday() {
if (is_classic_)
out_ = write(out_, tm_wday_short_name(tm_wday()));
else
format_localized('a');
}
void on_full_weekday() {
if (is_classic_)
out_ = write(out_, tm_wday_full_name(tm_wday()));
else
format_localized('A');
}
void on_dec0_weekday(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) return write1(tm_wday());
format_localized('w', 'O');
}
void on_dec1_weekday(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) {
auto wday = tm_wday();
write1(wday == 0 ? days_per_week : wday);
} else {
format_localized('u', 'O');
}
}
void on_abbr_month() {
if (is_classic_)
out_ = write(out_, tm_mon_short_name(tm_mon()));
else
format_localized('b');
}
void on_full_month() {
if (is_classic_)
out_ = write(out_, tm_mon_full_name(tm_mon()));
else
format_localized('B');
}
void on_datetime(numeric_system ns) {
if (is_classic_) {
on_abbr_weekday();
*out_++ = ' ';
on_abbr_month();
*out_++ = ' ';
on_day_of_month_space(numeric_system::standard);
*out_++ = ' ';
on_iso_time();
*out_++ = ' ';
on_year(numeric_system::standard);
} else {
format_localized('c', ns == numeric_system::standard ? '\0' : 'E');
}
}
void on_loc_date(numeric_system ns) {
if (is_classic_)
on_us_date();
else
format_localized('x', ns == numeric_system::standard ? '\0' : 'E');
}
void on_loc_time(numeric_system ns) {
if (is_classic_)
on_iso_time();
else
format_localized('X', ns == numeric_system::standard ? '\0' : 'E');
}
void on_us_date() {
char buf[8];
write_digit2_separated(buf, to_unsigned(tm_mon() + 1),
to_unsigned(tm_mday()),
to_unsigned(split_year_lower(tm_year())), '/');
out_ = copy_str<Char>(std::begin(buf), std::end(buf), out_);
}
void on_iso_date() {
auto year = tm_year();
char buf[10];
size_t offset = 0;
if (year >= 0 && year < 10000) {
copy2(buf, digits2(static_cast<size_t>(year / 100)));
} else {
offset = 4;
write_year_extended(year);
year = 0;
}
write_digit2_separated(buf + 2, static_cast<unsigned>(year % 100),
to_unsigned(tm_mon() + 1), to_unsigned(tm_mday()),
'-');
out_ = copy_str<Char>(std::begin(buf) + offset, std::end(buf), out_);
}
void on_utc_offset(numeric_system ns) { format_utc_offset_impl(tm_, ns); }
void on_tz_name() { format_tz_name_impl(tm_); }
void on_year(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard)
return write_year(tm_year());
format_localized('Y', 'E');
}
void on_short_year(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard)
return write2(split_year_lower(tm_year()));
format_localized('y', 'O');
}
void on_offset_year() {
if (is_classic_) return write2(split_year_lower(tm_year()));
format_localized('y', 'E');
}
void on_century(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) {
auto year = tm_year();
auto upper = year / 100;
if (year >= -99 && year < 0) {
// Zero upper on negative year.
*out_++ = '-';
*out_++ = '0';
} else if (upper >= 0 && upper < 100) {
write2(static_cast<int>(upper));
} else {
out_ = write<Char>(out_, upper);
}
} else {
format_localized('C', 'E');
}
}
void on_dec_month(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard)
return write2(tm_mon() + 1);
format_localized('m', 'O');
}
void on_dec0_week_of_year(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard)
return write2((tm_yday() + days_per_week - tm_wday()) / days_per_week);
format_localized('U', 'O');
}
void on_dec1_week_of_year(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) {
auto wday = tm_wday();
write2((tm_yday() + days_per_week -
(wday == 0 ? (days_per_week - 1) : (wday - 1))) /
days_per_week);
} else {
format_localized('W', 'O');
}
}
void on_iso_week_of_year(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard)
return write2(tm_iso_week_of_year());
format_localized('V', 'O');
}
void on_iso_week_based_year() { write_year(tm_iso_week_year()); }
void on_iso_week_based_short_year() {
write2(split_year_lower(tm_iso_week_year()));
}
void on_day_of_year() {
auto yday = tm_yday() + 1;
write1(yday / 100);
write2(yday % 100);
}
void on_day_of_month(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) return write2(tm_mday());
format_localized('d', 'O');
}
void on_day_of_month_space(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) {
auto mday = to_unsigned(tm_mday()) % 100;
const char* d2 = digits2(mday);
*out_++ = mday < 10 ? ' ' : d2[0];
*out_++ = d2[1];
} else {
format_localized('e', 'O');
}
}
void on_24_hour(numeric_system ns, pad_type pad) {
if (is_classic_ || ns == numeric_system::standard)
return write2(tm_hour(), pad);
format_localized('H', 'O');
}
void on_12_hour(numeric_system ns, pad_type pad) {
if (is_classic_ || ns == numeric_system::standard)
return write2(tm_hour12(), pad);
format_localized('I', 'O');
}
void on_minute(numeric_system ns, pad_type pad) {
if (is_classic_ || ns == numeric_system::standard)
return write2(tm_min(), pad);
format_localized('M', 'O');
}
void on_second(numeric_system ns, pad_type pad) {
if (is_classic_ || ns == numeric_system::standard) {
write2(tm_sec(), pad);
if (subsecs_) {
if (std::is_floating_point<typename Duration::rep>::value) {
auto buf = memory_buffer();
write_floating_seconds(buf, *subsecs_);
if (buf.size() > 1) {
// Remove the leading "0", write something like ".123".
out_ = std::copy(buf.begin() + 1, buf.end(), out_);
}
} else {
write_fractional_seconds<Char>(out_, *subsecs_);
}
}
} else {
// Currently no formatting of subseconds when a locale is set.
format_localized('S', 'O');
}
}
void on_12_hour_time() {
if (is_classic_) {
char buf[8];
write_digit2_separated(buf, to_unsigned(tm_hour12()),
to_unsigned(tm_min()), to_unsigned(tm_sec()), ':');
out_ = copy_str<Char>(std::begin(buf), std::end(buf), out_);
*out_++ = ' ';
on_am_pm();
} else {
format_localized('r');
}
}
void on_24_hour_time() {
write2(tm_hour());
*out_++ = ':';
write2(tm_min());
}
void on_iso_time() {
on_24_hour_time();
*out_++ = ':';
on_second(numeric_system::standard, pad_type::unspecified);
}
void on_am_pm() {
if (is_classic_) {
*out_++ = tm_hour() < 12 ? 'A' : 'P';
*out_++ = 'M';
} else {
format_localized('p');
}
}
// These apply to chrono durations but not tm.
void on_duration_value() {}
void on_duration_unit() {}
};
struct chrono_format_checker : null_chrono_spec_handler<chrono_format_checker> {
bool has_precision_integral = false;
FMT_NORETURN void unsupported() { FMT_THROW(format_error("no date")); }
template <typename Char>
FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
FMT_CONSTEXPR void on_24_hour(numeric_system, pad_type) {}
FMT_CONSTEXPR void on_12_hour(numeric_system, pad_type) {}
FMT_CONSTEXPR void on_minute(numeric_system, pad_type) {}
FMT_CONSTEXPR void on_second(numeric_system, pad_type) {}
FMT_CONSTEXPR void on_12_hour_time() {}
FMT_CONSTEXPR void on_24_hour_time() {}
FMT_CONSTEXPR void on_iso_time() {}
FMT_CONSTEXPR void on_am_pm() {}
FMT_CONSTEXPR void on_duration_value() const {
if (has_precision_integral) {
FMT_THROW(format_error("precision not allowed for this argument type"));
}
}
FMT_CONSTEXPR void on_duration_unit() {}
};
template <typename T,
FMT_ENABLE_IF(std::is_integral<T>::value&& has_isfinite<T>::value)>
inline bool isfinite(T) {
return true;
}
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
inline T mod(T x, int y) {
return x % static_cast<T>(y);
}
template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
inline T mod(T x, int y) {
return std::fmod(x, static_cast<T>(y));
}
// If T is an integral type, maps T to its unsigned counterpart, otherwise
// leaves it unchanged (unlike std::make_unsigned).
template <typename T, bool INTEGRAL = std::is_integral<T>::value>
struct make_unsigned_or_unchanged {
using type = T;
};
template <typename T> struct make_unsigned_or_unchanged<T, true> {
using type = typename std::make_unsigned<T>::type;
};
#if FMT_SAFE_DURATION_CAST
// throwing version of safe_duration_cast
template <typename To, typename FromRep, typename FromPeriod>
To fmt_safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from) {
int ec;
To to = safe_duration_cast::safe_duration_cast<To>(from, ec);
if (ec) FMT_THROW(format_error("cannot format duration"));
return to;
}
#endif
template <typename Rep, typename Period,
FMT_ENABLE_IF(std::is_integral<Rep>::value)>
inline std::chrono::duration<Rep, std::milli> get_milliseconds(
std::chrono::duration<Rep, Period> d) {
// this may overflow and/or the result may not fit in the
// target type.
#if FMT_SAFE_DURATION_CAST
using CommonSecondsType =
typename std::common_type<decltype(d), std::chrono::seconds>::type;
const auto d_as_common = fmt_safe_duration_cast<CommonSecondsType>(d);
const auto d_as_whole_seconds =
fmt_safe_duration_cast<std::chrono::seconds>(d_as_common);
// this conversion should be nonproblematic
const auto diff = d_as_common - d_as_whole_seconds;
const auto ms =
fmt_safe_duration_cast<std::chrono::duration<Rep, std::milli>>(diff);
return ms;
#else
auto s = std::chrono::duration_cast<std::chrono::seconds>(d);
return std::chrono::duration_cast<std::chrono::milliseconds>(d - s);
#endif
}
template <typename Char, typename Rep, typename OutputIt,
FMT_ENABLE_IF(std::is_integral<Rep>::value)>
OutputIt format_duration_value(OutputIt out, Rep val, int) {
return write<Char>(out, val);
}
template <typename Char, typename Rep, typename OutputIt,
FMT_ENABLE_IF(std::is_floating_point<Rep>::value)>
OutputIt format_duration_value(OutputIt out, Rep val, int precision) {
auto specs = format_specs<Char>();
specs.precision = precision;
specs.type = precision >= 0 ? presentation_type::fixed_lower
: presentation_type::general_lower;
return write<Char>(out, val, specs);
}
template <typename Char, typename OutputIt>
OutputIt copy_unit(string_view unit, OutputIt out, Char) {
return std::copy(unit.begin(), unit.end(), out);
}
template <typename OutputIt>
OutputIt copy_unit(string_view unit, OutputIt out, wchar_t) {
// This works when wchar_t is UTF-32 because units only contain characters
// that have the same representation in UTF-16 and UTF-32.
utf8_to_utf16 u(unit);
return std::copy(u.c_str(), u.c_str() + u.size(), out);
}
template <typename Char, typename Period, typename OutputIt>
OutputIt format_duration_unit(OutputIt out) {
if (const char* unit = get_units<Period>())
return copy_unit(string_view(unit), out, Char());
*out++ = '[';
out = write<Char>(out, Period::num);
if (const_check(Period::den != 1)) {
*out++ = '/';
out = write<Char>(out, Period::den);
}
*out++ = ']';
*out++ = 's';
return out;
}
class get_locale {
private:
union {
std::locale locale_;
};
bool has_locale_ = false;
public:
get_locale(bool localized, locale_ref loc) : has_locale_(localized) {
if (localized)
::new (&locale_) std::locale(loc.template get<std::locale>());
}
~get_locale() {
if (has_locale_) locale_.~locale();
}
operator const std::locale&() const {
return has_locale_ ? locale_ : get_classic_locale();
}
};
template <typename FormatContext, typename OutputIt, typename Rep,
typename Period>
struct chrono_formatter {
FormatContext& context;
OutputIt out;
int precision;
bool localized = false;
// rep is unsigned to avoid overflow.
using rep =
conditional_t<std::is_integral<Rep>::value && sizeof(Rep) < sizeof(int),
unsigned, typename make_unsigned_or_unchanged<Rep>::type>;
rep val;
using seconds = std::chrono::duration<rep>;
seconds s;
using milliseconds = std::chrono::duration<rep, std::milli>;
bool negative;
using char_type = typename FormatContext::char_type;
using tm_writer_type = tm_writer<OutputIt, char_type>;
chrono_formatter(FormatContext& ctx, OutputIt o,
std::chrono::duration<Rep, Period> d)
: context(ctx),
out(o),
val(static_cast<rep>(d.count())),
negative(false) {
if (d.count() < 0) {
val = 0 - val;
negative = true;
}
// this may overflow and/or the result may not fit in the
// target type.
#if FMT_SAFE_DURATION_CAST
// might need checked conversion (rep!=Rep)
auto tmpval = std::chrono::duration<rep, Period>(val);
s = fmt_safe_duration_cast<seconds>(tmpval);
#else
s = std::chrono::duration_cast<seconds>(
std::chrono::duration<rep, Period>(val));
#endif
}
// returns true if nan or inf, writes to out.
bool handle_nan_inf() {
if (isfinite(val)) {
return false;
}
if (isnan(val)) {
write_nan();
return true;
}
// must be +-inf
if (val > 0) {
write_pinf();
} else {
write_ninf();
}
return true;
}
Rep hour() const { return static_cast<Rep>(mod((s.count() / 3600), 24)); }
Rep hour12() const {
Rep hour = static_cast<Rep>(mod((s.count() / 3600), 12));
return hour <= 0 ? 12 : hour;
}
Rep minute() const { return static_cast<Rep>(mod((s.count() / 60), 60)); }
Rep second() const { return static_cast<Rep>(mod(s.count(), 60)); }
std::tm time() const {
auto time = std::tm();
time.tm_hour = to_nonnegative_int(hour(), 24);
time.tm_min = to_nonnegative_int(minute(), 60);
time.tm_sec = to_nonnegative_int(second(), 60);
return time;
}
void write_sign() {
if (negative) {
*out++ = '-';
negative = false;
}
}
void write(Rep value, int width, pad_type pad = pad_type::unspecified) {
write_sign();
if (isnan(value)) return write_nan();
uint32_or_64_or_128_t<int> n =
to_unsigned(to_nonnegative_int(value, max_value<int>()));
int num_digits = detail::count_digits(n);
if (width > num_digits) {
out = detail::write_padding(out, pad, width - num_digits);
}
out = format_decimal<char_type>(out, n, num_digits).end;
}
void write_nan() { std::copy_n("nan", 3, out); }
void write_pinf() { std::copy_n("inf", 3, out); }
void write_ninf() { std::copy_n("-inf", 4, out); }
template <typename Callback, typename... Args>
void format_tm(const tm& time, Callback cb, Args... args) {
if (isnan(val)) return write_nan();
get_locale loc(localized, context.locale());
auto w = tm_writer_type(loc, out, time);
(w.*cb)(args...);
out = w.out();
}
void on_text(const char_type* begin, const char_type* end) {
std::copy(begin, end, out);
}
// These are not implemented because durations don't have date information.
void on_abbr_weekday() {}
void on_full_weekday() {}
void on_dec0_weekday(numeric_system) {}
void on_dec1_weekday(numeric_system) {}
void on_abbr_month() {}
void on_full_month() {}
void on_datetime(numeric_system) {}
void on_loc_date(numeric_system) {}
void on_loc_time(numeric_system) {}
void on_us_date() {}
void on_iso_date() {}
void on_utc_offset(numeric_system) {}
void on_tz_name() {}
void on_year(numeric_system) {}
void on_short_year(numeric_system) {}
void on_offset_year() {}
void on_century(numeric_system) {}
void on_iso_week_based_year() {}
void on_iso_week_based_short_year() {}
void on_dec_month(numeric_system) {}
void on_dec0_week_of_year(numeric_system) {}
void on_dec1_week_of_year(numeric_system) {}
void on_iso_week_of_year(numeric_system) {}
void on_day_of_year() {}
void on_day_of_month(numeric_system) {}
void on_day_of_month_space(numeric_system) {}
void on_24_hour(numeric_system ns, pad_type pad) {
if (handle_nan_inf()) return;
if (ns == numeric_system::standard) return write(hour(), 2, pad);
auto time = tm();
time.tm_hour = to_nonnegative_int(hour(), 24);
format_tm(time, &tm_writer_type::on_24_hour, ns, pad);
}
void on_12_hour(numeric_system ns, pad_type pad) {
if (handle_nan_inf()) return;
if (ns == numeric_system::standard) return write(hour12(), 2, pad);
auto time = tm();
time.tm_hour = to_nonnegative_int(hour12(), 12);
format_tm(time, &tm_writer_type::on_12_hour, ns, pad);
}
void on_minute(numeric_system ns, pad_type pad) {
if (handle_nan_inf()) return;
if (ns == numeric_system::standard) return write(minute(), 2, pad);
auto time = tm();
time.tm_min = to_nonnegative_int(minute(), 60);
format_tm(time, &tm_writer_type::on_minute, ns, pad);
}
void on_second(numeric_system ns, pad_type pad) {
if (handle_nan_inf()) return;
if (ns == numeric_system::standard) {
if (std::is_floating_point<rep>::value) {
auto buf = memory_buffer();
write_floating_seconds(buf, std::chrono::duration<rep, Period>(val),
precision);
if (negative) *out++ = '-';
if (buf.size() < 2 || buf[1] == '.') {
out = detail::write_padding(out, pad);
}
out = std::copy(buf.begin(), buf.end(), out);
} else {
write(second(), 2, pad);
write_fractional_seconds<char_type>(
out, std::chrono::duration<rep, Period>(val), precision);
}
return;
}
auto time = tm();
time.tm_sec = to_nonnegative_int(second(), 60);
format_tm(time, &tm_writer_type::on_second, ns, pad);
}
void on_12_hour_time() {
if (handle_nan_inf()) return;
format_tm(time(), &tm_writer_type::on_12_hour_time);
}
void on_24_hour_time() {
if (handle_nan_inf()) {
*out++ = ':';
handle_nan_inf();
return;
}
write(hour(), 2);
*out++ = ':';
write(minute(), 2);
}
void on_iso_time() {
on_24_hour_time();
*out++ = ':';
if (handle_nan_inf()) return;
on_second(numeric_system::standard, pad_type::unspecified);
}
void on_am_pm() {
if (handle_nan_inf()) return;
format_tm(time(), &tm_writer_type::on_am_pm);
}
void on_duration_value() {
if (handle_nan_inf()) return;
write_sign();
out = format_duration_value<char_type>(out, val, precision);
}
void on_duration_unit() {
out = format_duration_unit<char_type, Period>(out);
}
};
FMT_END_DETAIL_NAMESPACE
#if defined(__cpp_lib_chrono) && __cpp_lib_chrono >= 201907
using weekday = std::chrono::weekday;
#else
// A fallback version of weekday.
class weekday {
private:
unsigned char value;
public:
weekday() = default;
explicit constexpr weekday(unsigned wd) noexcept
: value(static_cast<unsigned char>(wd != 7 ? wd : 0)) {}
constexpr unsigned c_encoding() const noexcept { return value; }
};
class year_month_day {};
#endif
// A rudimentary weekday formatter.
template <typename Char> struct formatter<weekday, Char> {
private:
bool localized = false;
public:
FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
-> decltype(ctx.begin()) {
auto begin = ctx.begin(), end = ctx.end();
if (begin != end && *begin == 'L') {
++begin;
localized = true;
}
return begin;
}
template <typename FormatContext>
auto format(weekday wd, FormatContext& ctx) const -> decltype(ctx.out()) {
auto time = std::tm();
time.tm_wday = static_cast<int>(wd.c_encoding());
detail::get_locale loc(localized, ctx.locale());
auto w = detail::tm_writer<decltype(ctx.out()), Char>(loc, ctx.out(), time);
w.on_abbr_weekday();
return w.out();
}
};
template <typename Rep, typename Period, typename Char>
struct formatter<std::chrono::duration<Rep, Period>, Char> {
private:
format_specs<Char> specs;
int precision = -1;
using arg_ref_type = detail::arg_ref<Char>;
arg_ref_type width_ref;
arg_ref_type precision_ref;
bool localized = false;
basic_string_view<Char> format_str;
using duration = std::chrono::duration<Rep, Period>;
using iterator = typename basic_format_parse_context<Char>::iterator;
struct parse_range {
iterator begin;
iterator end;
};
FMT_CONSTEXPR parse_range do_parse(basic_format_parse_context<Char>& ctx) {
auto begin = ctx.begin(), end = ctx.end();
if (begin == end || *begin == '}') return {begin, begin};
begin = detail::parse_align(begin, end, specs);
if (begin == end) return {begin, begin};
begin = detail::parse_dynamic_spec(begin, end, specs.width, width_ref, ctx);
if (begin == end) return {begin, begin};
auto checker = detail::chrono_format_checker();
if (*begin == '.') {
checker.has_precision_integral = !std::is_floating_point<Rep>::value;
begin =
detail::parse_precision(begin, end, precision, precision_ref, ctx);
}
if (begin != end && *begin == 'L') {
++begin;
localized = true;
}
end = detail::parse_chrono_format(begin, end, checker);
return {begin, end};
}
public:
FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
-> decltype(ctx.begin()) {
auto range = do_parse(ctx);
format_str = basic_string_view<Char>(
&*range.begin, detail::to_unsigned(range.end - range.begin));
return range.end;
}
template <typename FormatContext>
auto format(const duration& d, FormatContext& ctx) const
-> decltype(ctx.out()) {
auto specs_copy = specs;
auto precision_copy = precision;
auto begin = format_str.begin(), end = format_str.end();
// As a possible future optimization, we could avoid extra copying if width
// is not specified.
basic_memory_buffer<Char> buf;
auto out = std::back_inserter(buf);
detail::handle_dynamic_spec<detail::width_checker>(specs_copy.width,
width_ref, ctx);
detail::handle_dynamic_spec<detail::precision_checker>(precision_copy,
precision_ref, ctx);
if (begin == end || *begin == '}') {
out = detail::format_duration_value<Char>(out, d.count(), precision_copy);
detail::format_duration_unit<Char, Period>(out);
} else {
detail::chrono_formatter<FormatContext, decltype(out), Rep, Period> f(
ctx, out, d);
f.precision = precision_copy;
f.localized = localized;
detail::parse_chrono_format(begin, end, f);
}
return detail::write(
ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs_copy);
}
};
template <typename Char, typename Duration>
struct formatter<std::chrono::time_point<std::chrono::system_clock, Duration>,
Char> : formatter<std::tm, Char> {
FMT_CONSTEXPR formatter() {
this->format_str = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{};
}
template <typename FormatContext>
auto format(std::chrono::time_point<std::chrono::system_clock, Duration> val,
FormatContext& ctx) const -> decltype(ctx.out()) {
using period = typename Duration::period;
if (period::num != 1 || period::den != 1 ||
std::is_floating_point<typename Duration::rep>::value) {
const auto epoch = val.time_since_epoch();
auto subsecs = std::chrono::duration_cast<Duration>(
epoch - std::chrono::duration_cast<std::chrono::seconds>(epoch));
if (subsecs.count() < 0) {
auto second = std::chrono::duration_cast<Duration>(
std::chrono::seconds(1));
if (epoch.count() < ((Duration::min)() + second).count())
FMT_THROW(format_error("duration is too small"));
subsecs += second;
val -= second;
}
return formatter<std::tm, Char>::do_format(
gmtime(std::chrono::time_point_cast<std::chrono::seconds>(val)), ctx,
&subsecs);
}
return formatter<std::tm, Char>::format(
gmtime(std::chrono::time_point_cast<std::chrono::seconds>(val)), ctx);
}
};
#if FMT_USE_LOCAL_TIME
template <typename Char, typename Duration>
struct formatter<std::chrono::local_time<Duration>, Char>
: formatter<std::tm, Char> {
FMT_CONSTEXPR formatter() {
this->format_str = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{};
}
template <typename FormatContext>
auto format(std::chrono::local_time<Duration> val, FormatContext& ctx) const
-> decltype(ctx.out()) {
using period = typename Duration::period;
if (period::num != 1 || period::den != 1 ||
std::is_floating_point<typename Duration::rep>::value) {
const auto epoch = val.time_since_epoch();
const auto subsecs = std::chrono::duration_cast<Duration>(
epoch - std::chrono::duration_cast<std::chrono::seconds>(epoch));
return formatter<std::tm, Char>::do_format(
localtime(std::chrono::time_point_cast<std::chrono::seconds>(val)),
ctx, &subsecs);
}
return formatter<std::tm, Char>::format(
localtime(std::chrono::time_point_cast<std::chrono::seconds>(val)),
ctx);
}
};
#endif
#if FMT_USE_UTC_TIME
template <typename Char, typename Duration>
struct formatter<std::chrono::time_point<std::chrono::utc_clock, Duration>,
Char>
: formatter<std::chrono::time_point<std::chrono::system_clock, Duration>,
Char> {
template <typename FormatContext>
auto format(std::chrono::time_point<std::chrono::utc_clock, Duration> val,
FormatContext& ctx) const -> decltype(ctx.out()) {
return formatter<
std::chrono::time_point<std::chrono::system_clock, Duration>,
Char>::format(std::chrono::utc_clock::to_sys(val), ctx);
}
};
#endif
template <typename Char> struct formatter<std::tm, Char> {
private:
format_specs<Char> specs;
detail::arg_ref<Char> width_ref;
protected:
basic_string_view<Char> format_str;
FMT_CONSTEXPR auto do_parse(basic_format_parse_context<Char>& ctx)
-> decltype(ctx.begin()) {
auto begin = ctx.begin(), end = ctx.end();
if (begin == end || *begin == '}') return begin;
begin = detail::parse_align(begin, end, specs);
if (begin == end) return end;
begin = detail::parse_dynamic_spec(begin, end, specs.width, width_ref, ctx);
if (begin == end) return end;
end = detail::parse_chrono_format(begin, end, detail::tm_format_checker());
// Replace default format_str only if the new spec is not empty.
if (end != begin) format_str = {begin, detail::to_unsigned(end - begin)};
return end;
}
template <typename FormatContext, typename Duration>
auto do_format(const std::tm& tm, FormatContext& ctx,
const Duration* subsecs) const -> decltype(ctx.out()) {
auto specs_copy = specs;
basic_memory_buffer<Char> buf;
auto out = std::back_inserter(buf);
detail::handle_dynamic_spec<detail::width_checker>(specs_copy.width,
width_ref, ctx);
const auto loc_ref = ctx.locale();
detail::get_locale loc(static_cast<bool>(loc_ref), loc_ref);
auto w =
detail::tm_writer<decltype(out), Char, Duration>(loc, out, tm, subsecs);
detail::parse_chrono_format(format_str.begin(), format_str.end(), w);
return detail::write(
ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs_copy);
}
public:
FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
-> decltype(ctx.begin()) {
return this->do_parse(ctx);
}
template <typename FormatContext>
auto format(const std::tm& tm, FormatContext& ctx) const
-> decltype(ctx.out()) {
return do_format<FormatContext, std::chrono::seconds>(tm, ctx, nullptr);
}
};
FMT_END_EXPORT
FMT_END_NAMESPACE
#endif // FMT_CHRONO_H_