2
0
mirror of https://github.com/munin-monitoring/contrib.git synced 2018-11-08 00:59:34 +01:00
contrib-munin/plugins/luftdaten/feinstaubsensor
2018-05-10 14:55:04 +02:00

206 lines
6.7 KiB
Python
Executable File

#!/usr/bin/env python3
"""
=head1 NAME
feinstaubsensor - Plugin to monitor one or more environmental sensors
=head1 APPLICABLE SYSTEMS
The "Feinstaubsensor" was developed by the OK Lab Stuttgart and is part of the
Citizen Science Project "luftdaten.info" (http://luftdaten.info).
Data is retrieved via HTTP requests from the sensors itself.
=head1 CONFIGURATION
Place a configuration entry somewhere below /etc/munin/plugin-conf.d/:
[feinstaubsensor]
env.sensor_hosts foo=192.168.1.4 [fe80::1:2:3:4%eth0] bar=sensor2.lan
The <sensor_hosts> environment variable is a space separated list of <token>.
Each <token> can be either a <host> or a combination of label and <host> (separated by the
character "=").
A <host> may be an IPv4 address, an IPv6 address (enclosed in square brackets) or a name to be
resolved via DNS.
Examples for <token>:
* 192.168.1.4
* foo=192.168.1.4
* [fe80::1a:2b:3c:cafe]
* bar=[fe80::1a:2b:3c:cafe]
* feinstaubsensor-12345.local
* baz=feinstaubsensor-12345.local
=head1 AUTHOR
Lars Kruse <devel@sumpfralle.de>
=head1 LICENSE
GPLv3
=head1 MAGIC MARKERS
#%# family=manual
"""
import collections
import functools
import json
import os
import re
import sys
import urllib.request
graphs = [
{
"name": "wireless_signal",
"graph_title": "Feinstaub Wifi Signal",
"graph_vlabel": "%",
"graph_args": "-l 0",
"graph_info": "Wifi signal strength",
"api_value_name": "signal",
"value_type": "GAUGE",
}, {
"name": "feinstaub_samples",
"graph_title": "Feinstaub Sample Count",
"graph_vlabel": "#",
"graph_info": "Number of samples since bootup",
"api_value_name": "samples",
"value_type": "DERIVE",
}, {
"name": "feinstaub_humidity",
"graph_title": "Feinstaub Humidity",
"graph_vlabel": "% humidity",
"graph_info": "Weather information: air humidity",
"api_value_name": "humidity",
"value_type": "GAUGE",
}, {
"name": "feinstaub_temperature",
"graph_title": "Feinstaub Temperature",
"graph_vlabel": "°C",
"graph_info": "Weather information: temperature",
"api_value_name": "temperature",
"value_type": "GAUGE",
}, {
"name": "feinstaub_particles_pm10",
"graph_title": "Feinstaub Particle Measurement P10",
"graph_vlabel": "µg / m³",
"graph_info": "Concentration of particles with a size between 2.5µm and 10µm",
"api_value_name": "SDS_P1",
"value_type": "GAUGE",
}, {
"name": "feinstaub_particles_pm2_5",
"graph_title": "Feinstaub Particle Measurement P2.5",
"graph_vlabel": "µg / m³",
"graph_info": "Concentration of particles with a size up to 2.5µm",
"api_value_name": "SDS_P2",
"value_type": "GAUGE",
}]
SensorHost = collections.namedtuple("SensorHost", ("host", "label", "fieldname"))
def clean_fieldname(text):
if text == "root":
# "root" is a magic (forbidden) word
return "_root"
else:
return re.sub(r"(^[^A-Za-z_]|[^A-Za-z0-9_])", "_", text)
def parse_sensor_hosts_from_description(hosts_description):
""" parse sensor list from the environment variable 'sensor_hosts' and retrieve their data """
sensors = []
for token in hosts_description.split():
if "=" in token:
label, host = token.strip().split("=", 1)
else:
host = token.strip()
label = host
fieldname = clean_fieldname("value_" + host)
sensors.append(SensorHost(host, label, fieldname))
sensors.sort(key=lambda item: item.fieldname)
return sensors
@functools.lru_cache()
def get_sensor_data(host):
""" request the data from a sensor and return a dict (value_type -> value)
The result is cached - thus we do not need to take care for efficiency.
Example dataset returned by the sensor:
{"software_version": "NRZ-2017-099", "age":"88", "sensordatavalues":[
{"value_type":"SDS_P1","value":"27.37"},{"value_type":"SDS_P2","value":"13.53"},
{"value_type":"temperature","value":"23.70"},{"value_type":"humidity","value":"69.20"},
{"value_type":"samples","value":"626964"},{"value_type":"min_micro","value":"225"},
{"value_type":"max_micro","value":"887641"},{"value_type":"signal","value":"-47"}]}
"""
try:
with urllib.request.urlopen("http://{}/data.json".format(host)) as request:
body = request.read()
except IOError as exc:
print("Failed to retrieve data from '{}': {}".format(host, exc), file=sys.stderr)
return None
try:
data = json.loads(body.decode("utf-8"))
except ValueError as exc:
print("Failed to parse data from '{}': {}".format(host, exc), file=sys.stderr)
return None
return {item["value_type"]: item["value"] for item in data["sensordatavalues"]}
def print_graph_section(graph_description, hosts, include_config, include_values):
print("multigraph {}".format(graph_description["name"]))
if include_config:
# graph configuration
print("graph_category sensors")
for key in ("graph_title", "graph_vlabel", "graph_args", "graph_info"):
if key in graph_description:
print("{} {}".format(key, graph_description[key]))
for host_info in hosts:
print("{}.label {}".format(host_info.fieldname, host_info.label))
print("{}.type {}".format(host_info.fieldname, graph_description["value_type"]))
if include_values:
for host_info in hosts:
# We cannot distinguish between fields that are not supported by the sensor (most are
# optional) and missing data. Thus we cannot handle online/offline sensor data fields,
# too.
data = get_sensor_data(host_info.host)
if data is not None:
value = data.get(graph_description["api_value_name"])
if value is not None:
print("{}.value {}".format(host_info.fieldname, value))
print()
action = sys.argv[1] if (len(sys.argv) > 1) else ""
sensor_hosts = parse_sensor_hosts_from_description(os.getenv("sensor_hosts", ""))
if not sensor_hosts:
print("ERROR: undefined or empty environment variable 'sensor_hosts'.", file=sys.stderr)
sys.exit(1)
if action == "config":
is_dirty_config = (os.getenv("MUNIN_CAP_DIRTYCONFIG") == "1")
for graph in graphs:
print_graph_section(graph, sensor_hosts, True, is_dirty_config)
elif action == "":
for graph in graphs:
print_graph_section(graph, sensor_hosts, False, True)
else:
print("ERROR: unsupported action requested ('{}')".format(action), file=sys.stderr)
sys.exit(2)