package goldilocks import fp "github.com/cloudflare/circl/math/fp448" func (Curve) pull(P *twistPoint) *Point { return twistCurve{}.push(P) } func (twistCurve) pull(P *Point) *twistPoint { return Curve{}.push(P) } // push sends a point on the Goldilocks curve to a point on the twist curve. func (Curve) push(P *Point) *twistPoint { Q := &twistPoint{} Px, Py, Pz := &P.x, &P.y, &P.z a, b, c, d, e, f, g, h := &Q.x, &Q.y, &Q.z, &fp.Elt{}, &Q.ta, &Q.x, &Q.y, &Q.tb fp.Add(e, Px, Py) // x+y fp.Sqr(a, Px) // A = x^2 fp.Sqr(b, Py) // B = y^2 fp.Sqr(c, Pz) // z^2 fp.Add(c, c, c) // C = 2*z^2 *d = *a // D = A fp.Sqr(e, e) // (x+y)^2 fp.Sub(e, e, a) // (x+y)^2-A fp.Sub(e, e, b) // E = (x+y)^2-A-B fp.Add(h, b, d) // H = B+D fp.Sub(g, b, d) // G = B-D fp.Sub(f, c, h) // F = C-H fp.Mul(&Q.z, f, g) // Z = F * G fp.Mul(&Q.x, e, f) // X = E * F fp.Mul(&Q.y, g, h) // Y = G * H, // T = E * H return Q } // push sends a point on the twist curve to a point on the Goldilocks curve. func (twistCurve) push(P *twistPoint) *Point { Q := &Point{} Px, Py, Pz := &P.x, &P.y, &P.z a, b, c, d, e, f, g, h := &Q.x, &Q.y, &Q.z, &fp.Elt{}, &Q.ta, &Q.x, &Q.y, &Q.tb fp.Add(e, Px, Py) // x+y fp.Sqr(a, Px) // A = x^2 fp.Sqr(b, Py) // B = y^2 fp.Sqr(c, Pz) // z^2 fp.Add(c, c, c) // C = 2*z^2 fp.Neg(d, a) // D = -A fp.Sqr(e, e) // (x+y)^2 fp.Sub(e, e, a) // (x+y)^2-A fp.Sub(e, e, b) // E = (x+y)^2-A-B fp.Add(h, b, d) // H = B+D fp.Sub(g, b, d) // G = B-D fp.Sub(f, c, h) // F = C-H fp.Mul(&Q.z, f, g) // Z = F * G fp.Mul(&Q.x, e, f) // X = E * F fp.Mul(&Q.y, g, h) // Y = G * H, // T = E * H return Q }