package goldilocks import ( "fmt" fp "github.com/cloudflare/circl/math/fp448" ) type twistPoint struct{ x, y, z, ta, tb fp.Elt } type preTwistPointAffine struct{ addYX, subYX, dt2 fp.Elt } type preTwistPointProy struct { preTwistPointAffine z2 fp.Elt } func (P *twistPoint) String() string { return fmt.Sprintf("x: %v\ny: %v\nz: %v\nta: %v\ntb: %v", P.x, P.y, P.z, P.ta, P.tb) } // cneg conditionally negates the point if b=1. func (P *twistPoint) cneg(b uint) { t := &fp.Elt{} fp.Neg(t, &P.x) fp.Cmov(&P.x, t, b) fp.Neg(t, &P.ta) fp.Cmov(&P.ta, t, b) } // Double updates P with 2P. func (P *twistPoint) Double() { // This is formula (7) from "Twisted Edwards Curves Revisited" by // Hisil H., Wong K.KH., Carter G., Dawson E. (2008) // https://doi.org/10.1007/978-3-540-89255-7_20 Px, Py, Pz, Pta, Ptb := &P.x, &P.y, &P.z, &P.ta, &P.tb a, b, c, e, f, g, h := Px, Py, Pz, Pta, Px, Py, Ptb fp.Add(e, Px, Py) // x+y fp.Sqr(a, Px) // A = x^2 fp.Sqr(b, Py) // B = y^2 fp.Sqr(c, Pz) // z^2 fp.Add(c, c, c) // C = 2*z^2 fp.Add(h, a, b) // H = A+B fp.Sqr(e, e) // (x+y)^2 fp.Sub(e, e, h) // E = (x+y)^2-A-B fp.Sub(g, b, a) // G = B-A fp.Sub(f, c, g) // F = C-G fp.Mul(Pz, f, g) // Z = F * G fp.Mul(Px, e, f) // X = E * F fp.Mul(Py, g, h) // Y = G * H, T = E * H } // mixAdd calculates P= P+Q, where Q is a precomputed point with Z_Q = 1. func (P *twistPoint) mixAddZ1(Q *preTwistPointAffine) { fp.Add(&P.z, &P.z, &P.z) // D = 2*z1 (z2=1) P.coreAddition(Q) } // coreAddition calculates P=P+Q for curves with A=-1. func (P *twistPoint) coreAddition(Q *preTwistPointAffine) { // This is the formula following (5) from "Twisted Edwards Curves Revisited" by // Hisil H., Wong K.KH., Carter G., Dawson E. (2008) // https://doi.org/10.1007/978-3-540-89255-7_20 Px, Py, Pz, Pta, Ptb := &P.x, &P.y, &P.z, &P.ta, &P.tb addYX2, subYX2, dt2 := &Q.addYX, &Q.subYX, &Q.dt2 a, b, c, d, e, f, g, h := Px, Py, &fp.Elt{}, Pz, Pta, Px, Py, Ptb fp.Mul(c, Pta, Ptb) // t1 = ta*tb fp.Sub(h, Py, Px) // y1-x1 fp.Add(b, Py, Px) // y1+x1 fp.Mul(a, h, subYX2) // A = (y1-x1)*(y2-x2) fp.Mul(b, b, addYX2) // B = (y1+x1)*(y2+x2) fp.Mul(c, c, dt2) // C = 2*D*t1*t2 fp.Sub(e, b, a) // E = B-A fp.Add(h, b, a) // H = B+A fp.Sub(f, d, c) // F = D-C fp.Add(g, d, c) // G = D+C fp.Mul(Pz, f, g) // Z = F * G fp.Mul(Px, e, f) // X = E * F fp.Mul(Py, g, h) // Y = G * H, T = E * H } func (P *preTwistPointAffine) neg() { P.addYX, P.subYX = P.subYX, P.addYX fp.Neg(&P.dt2, &P.dt2) } func (P *preTwistPointAffine) cneg(b int) { t := &fp.Elt{} fp.Cswap(&P.addYX, &P.subYX, uint(b)) fp.Neg(t, &P.dt2) fp.Cmov(&P.dt2, t, uint(b)) } func (P *preTwistPointAffine) cmov(Q *preTwistPointAffine, b uint) { fp.Cmov(&P.addYX, &Q.addYX, b) fp.Cmov(&P.subYX, &Q.subYX, b) fp.Cmov(&P.dt2, &Q.dt2, b) } // mixAdd calculates P= P+Q, where Q is a precomputed point with Z_Q != 1. func (P *twistPoint) mixAdd(Q *preTwistPointProy) { fp.Mul(&P.z, &P.z, &Q.z2) // D = 2*z1*z2 P.coreAddition(&Q.preTwistPointAffine) } // oddMultiples calculates T[i] = (2*i-1)P for 0 < i < len(T). func (P *twistPoint) oddMultiples(T []preTwistPointProy) { if n := len(T); n > 0 { T[0].FromTwistPoint(P) _2P := *P _2P.Double() R := &preTwistPointProy{} R.FromTwistPoint(&_2P) for i := 1; i < n; i++ { P.mixAdd(R) T[i].FromTwistPoint(P) } } } // cmov conditionally moves Q into P if b=1. func (P *preTwistPointProy) cmov(Q *preTwistPointProy, b uint) { P.preTwistPointAffine.cmov(&Q.preTwistPointAffine, b) fp.Cmov(&P.z2, &Q.z2, b) } // FromTwistPoint precomputes some coordinates of Q for missed addition. func (P *preTwistPointProy) FromTwistPoint(Q *twistPoint) { fp.Add(&P.addYX, &Q.y, &Q.x) // addYX = X + Y fp.Sub(&P.subYX, &Q.y, &Q.x) // subYX = Y - X fp.Mul(&P.dt2, &Q.ta, &Q.tb) // T = ta*tb fp.Mul(&P.dt2, &P.dt2, ¶mDTwist) // D*T fp.Add(&P.dt2, &P.dt2, &P.dt2) // dt2 = 2*D*T fp.Add(&P.z2, &Q.z, &Q.z) // z2 = 2*Z }