// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Stringer is a tool to automate the creation of methods that satisfy the fmt.Stringer // interface. Given the name of a (signed or unsigned) integer type T that has constants // defined, stringer will create a new self-contained Go source file implementing // // func (t T) String() string // // The file is created in the same package and directory as the package that defines T. // It has helpful defaults designed for use with go generate. // // Stringer works best with constants that are consecutive values such as created using iota, // but creates good code regardless. In the future it might also provide custom support for // constant sets that are bit patterns. // // For example, given this snippet, // // package painkiller // // type Pill int // // const ( // Placebo Pill = iota // Aspirin // Ibuprofen // Paracetamol // Acetaminophen = Paracetamol // ) // // running this command // // stringer -type=Pill // // in the same directory will create the file pill_string.go, in package painkiller, // containing a definition of // // func (Pill) String() string // // That method will translate the value of a Pill constant to the string representation // of the respective constant name, so that the call fmt.Print(painkiller.Aspirin) will // print the string "Aspirin". // // Typically this process would be run using go generate, like this: // // //go:generate stringer -type=Pill // // If multiple constants have the same value, the lexically first matching name will // be used (in the example, Acetaminophen will print as "Paracetamol"). // // With no arguments, it processes the package in the current directory. // Otherwise, the arguments must name a single directory holding a Go package // or a set of Go source files that represent a single Go package. // // The -type flag accepts a comma-separated list of types so a single run can // generate methods for multiple types. The default output file is t_string.go, // where t is the lower-cased name of the first type listed. It can be overridden // with the -output flag. // // The -linecomment flag tells stringer to generate the text of any line comment, trimmed // of leading spaces, instead of the constant name. For instance, if the constants above had a // Pill prefix, one could write // // PillAspirin // Aspirin // // to suppress it in the output. package main // import "golang.org/x/tools/cmd/stringer" import ( "bytes" "flag" "fmt" "go/ast" "go/constant" "go/format" "go/token" "go/types" "io/ioutil" "log" "os" "path/filepath" "sort" "strings" "golang.org/x/tools/go/packages" ) var ( typeNames = flag.String("type", "", "comma-separated list of type names; must be set") output = flag.String("output", "", "output file name; default srcdir/_string.go") trimprefix = flag.String("trimprefix", "", "trim the `prefix` from the generated constant names") linecomment = flag.Bool("linecomment", false, "use line comment text as printed text when present") buildTags = flag.String("tags", "", "comma-separated list of build tags to apply") ) // Usage is a replacement usage function for the flags package. func Usage() { fmt.Fprintf(os.Stderr, "Usage of stringer:\n") fmt.Fprintf(os.Stderr, "\tstringer [flags] -type T [directory]\n") fmt.Fprintf(os.Stderr, "\tstringer [flags] -type T files... # Must be a single package\n") fmt.Fprintf(os.Stderr, "For more information, see:\n") fmt.Fprintf(os.Stderr, "\thttps://pkg.go.dev/golang.org/x/tools/cmd/stringer\n") fmt.Fprintf(os.Stderr, "Flags:\n") flag.PrintDefaults() } func main() { log.SetFlags(0) log.SetPrefix("stringer: ") flag.Usage = Usage flag.Parse() if len(*typeNames) == 0 { flag.Usage() os.Exit(2) } types := strings.Split(*typeNames, ",") var tags []string if len(*buildTags) > 0 { tags = strings.Split(*buildTags, ",") } // We accept either one directory or a list of files. Which do we have? args := flag.Args() if len(args) == 0 { // Default: process whole package in current directory. args = []string{"."} } // Parse the package once. var dir string g := Generator{ trimPrefix: *trimprefix, lineComment: *linecomment, } // TODO(suzmue): accept other patterns for packages (directories, list of files, import paths, etc). if len(args) == 1 && isDirectory(args[0]) { dir = args[0] } else { if len(tags) != 0 { log.Fatal("-tags option applies only to directories, not when files are specified") } dir = filepath.Dir(args[0]) } g.parsePackage(args, tags) // Print the header and package clause. g.Printf("// Code generated by \"stringer %s\"; DO NOT EDIT.\n", strings.Join(os.Args[1:], " ")) g.Printf("\n") g.Printf("package %s", g.pkg.name) g.Printf("\n") g.Printf("import \"strconv\"\n") // Used by all methods. // Run generate for each type. for _, typeName := range types { g.generate(typeName) } // Format the output. src := g.format() // Write to file. outputName := *output if outputName == "" { baseName := fmt.Sprintf("%s_string.go", types[0]) outputName = filepath.Join(dir, strings.ToLower(baseName)) } err := ioutil.WriteFile(outputName, src, 0644) if err != nil { log.Fatalf("writing output: %s", err) } } // isDirectory reports whether the named file is a directory. func isDirectory(name string) bool { info, err := os.Stat(name) if err != nil { log.Fatal(err) } return info.IsDir() } // Generator holds the state of the analysis. Primarily used to buffer // the output for format.Source. type Generator struct { buf bytes.Buffer // Accumulated output. pkg *Package // Package we are scanning. trimPrefix string lineComment bool } func (g *Generator) Printf(format string, args ...interface{}) { fmt.Fprintf(&g.buf, format, args...) } // File holds a single parsed file and associated data. type File struct { pkg *Package // Package to which this file belongs. file *ast.File // Parsed AST. // These fields are reset for each type being generated. typeName string // Name of the constant type. values []Value // Accumulator for constant values of that type. trimPrefix string lineComment bool } type Package struct { name string defs map[*ast.Ident]types.Object files []*File } // parsePackage analyzes the single package constructed from the patterns and tags. // parsePackage exits if there is an error. func (g *Generator) parsePackage(patterns []string, tags []string) { cfg := &packages.Config{ Mode: packages.NeedName | packages.NeedTypes | packages.NeedTypesInfo | packages.NeedSyntax, // TODO: Need to think about constants in test files. Maybe write type_string_test.go // in a separate pass? For later. Tests: false, BuildFlags: []string{fmt.Sprintf("-tags=%s", strings.Join(tags, " "))}, } pkgs, err := packages.Load(cfg, patterns...) if err != nil { log.Fatal(err) } if len(pkgs) != 1 { log.Fatalf("error: %d packages found", len(pkgs)) } g.addPackage(pkgs[0]) } // addPackage adds a type checked Package and its syntax files to the generator. func (g *Generator) addPackage(pkg *packages.Package) { g.pkg = &Package{ name: pkg.Name, defs: pkg.TypesInfo.Defs, files: make([]*File, len(pkg.Syntax)), } for i, file := range pkg.Syntax { g.pkg.files[i] = &File{ file: file, pkg: g.pkg, trimPrefix: g.trimPrefix, lineComment: g.lineComment, } } } // generate produces the String method for the named type. func (g *Generator) generate(typeName string) { values := make([]Value, 0, 100) for _, file := range g.pkg.files { // Set the state for this run of the walker. file.typeName = typeName file.values = nil if file.file != nil { ast.Inspect(file.file, file.genDecl) values = append(values, file.values...) } } if len(values) == 0 { log.Fatalf("no values defined for type %s", typeName) } // Generate code that will fail if the constants change value. g.Printf("func _() {\n") g.Printf("\t// An \"invalid array index\" compiler error signifies that the constant values have changed.\n") g.Printf("\t// Re-run the stringer command to generate them again.\n") g.Printf("\tvar x [1]struct{}\n") for _, v := range values { g.Printf("\t_ = x[%s - %s]\n", v.originalName, v.str) } g.Printf("}\n") runs := splitIntoRuns(values) // The decision of which pattern to use depends on the number of // runs in the numbers. If there's only one, it's easy. For more than // one, there's a tradeoff between complexity and size of the data // and code vs. the simplicity of a map. A map takes more space, // but so does the code. The decision here (crossover at 10) is // arbitrary, but considers that for large numbers of runs the cost // of the linear scan in the switch might become important, and // rather than use yet another algorithm such as binary search, // we punt and use a map. In any case, the likelihood of a map // being necessary for any realistic example other than bitmasks // is very low. And bitmasks probably deserve their own analysis, // to be done some other day. switch { case len(runs) == 1: g.buildOneRun(runs, typeName) case len(runs) <= 10: g.buildMultipleRuns(runs, typeName) default: g.buildMap(runs, typeName) } } // splitIntoRuns breaks the values into runs of contiguous sequences. // For example, given 1,2,3,5,6,7 it returns {1,2,3},{5,6,7}. // The input slice is known to be non-empty. func splitIntoRuns(values []Value) [][]Value { // We use stable sort so the lexically first name is chosen for equal elements. sort.Stable(byValue(values)) // Remove duplicates. Stable sort has put the one we want to print first, // so use that one. The String method won't care about which named constant // was the argument, so the first name for the given value is the only one to keep. // We need to do this because identical values would cause the switch or map // to fail to compile. j := 1 for i := 1; i < len(values); i++ { if values[i].value != values[i-1].value { values[j] = values[i] j++ } } values = values[:j] runs := make([][]Value, 0, 10) for len(values) > 0 { // One contiguous sequence per outer loop. i := 1 for i < len(values) && values[i].value == values[i-1].value+1 { i++ } runs = append(runs, values[:i]) values = values[i:] } return runs } // format returns the gofmt-ed contents of the Generator's buffer. func (g *Generator) format() []byte { src, err := format.Source(g.buf.Bytes()) if err != nil { // Should never happen, but can arise when developing this code. // The user can compile the output to see the error. log.Printf("warning: internal error: invalid Go generated: %s", err) log.Printf("warning: compile the package to analyze the error") return g.buf.Bytes() } return src } // Value represents a declared constant. type Value struct { originalName string // The name of the constant. name string // The name with trimmed prefix. // The value is stored as a bit pattern alone. The boolean tells us // whether to interpret it as an int64 or a uint64; the only place // this matters is when sorting. // Much of the time the str field is all we need; it is printed // by Value.String. value uint64 // Will be converted to int64 when needed. signed bool // Whether the constant is a signed type. str string // The string representation given by the "go/constant" package. } func (v *Value) String() string { return v.str } // byValue lets us sort the constants into increasing order. // We take care in the Less method to sort in signed or unsigned order, // as appropriate. type byValue []Value func (b byValue) Len() int { return len(b) } func (b byValue) Swap(i, j int) { b[i], b[j] = b[j], b[i] } func (b byValue) Less(i, j int) bool { if b[i].signed { return int64(b[i].value) < int64(b[j].value) } return b[i].value < b[j].value } // genDecl processes one declaration clause. func (f *File) genDecl(node ast.Node) bool { decl, ok := node.(*ast.GenDecl) if !ok || decl.Tok != token.CONST { // We only care about const declarations. return true } // The name of the type of the constants we are declaring. // Can change if this is a multi-element declaration. typ := "" // Loop over the elements of the declaration. Each element is a ValueSpec: // a list of names possibly followed by a type, possibly followed by values. // If the type and value are both missing, we carry down the type (and value, // but the "go/types" package takes care of that). for _, spec := range decl.Specs { vspec := spec.(*ast.ValueSpec) // Guaranteed to succeed as this is CONST. if vspec.Type == nil && len(vspec.Values) > 0 { // "X = 1". With no type but a value. If the constant is untyped, // skip this vspec and reset the remembered type. typ = "" // If this is a simple type conversion, remember the type. // We don't mind if this is actually a call; a qualified call won't // be matched (that will be SelectorExpr, not Ident), and only unusual // situations will result in a function call that appears to be // a type conversion. ce, ok := vspec.Values[0].(*ast.CallExpr) if !ok { continue } id, ok := ce.Fun.(*ast.Ident) if !ok { continue } typ = id.Name } if vspec.Type != nil { // "X T". We have a type. Remember it. ident, ok := vspec.Type.(*ast.Ident) if !ok { continue } typ = ident.Name } if typ != f.typeName { // This is not the type we're looking for. continue } // We now have a list of names (from one line of source code) all being // declared with the desired type. // Grab their names and actual values and store them in f.values. for _, name := range vspec.Names { if name.Name == "_" { continue } // This dance lets the type checker find the values for us. It's a // bit tricky: look up the object declared by the name, find its // types.Const, and extract its value. obj, ok := f.pkg.defs[name] if !ok { log.Fatalf("no value for constant %s", name) } info := obj.Type().Underlying().(*types.Basic).Info() if info&types.IsInteger == 0 { log.Fatalf("can't handle non-integer constant type %s", typ) } value := obj.(*types.Const).Val() // Guaranteed to succeed as this is CONST. if value.Kind() != constant.Int { log.Fatalf("can't happen: constant is not an integer %s", name) } i64, isInt := constant.Int64Val(value) u64, isUint := constant.Uint64Val(value) if !isInt && !isUint { log.Fatalf("internal error: value of %s is not an integer: %s", name, value.String()) } if !isInt { u64 = uint64(i64) } v := Value{ originalName: name.Name, value: u64, signed: info&types.IsUnsigned == 0, str: value.String(), } if c := vspec.Comment; f.lineComment && c != nil && len(c.List) == 1 { v.name = strings.TrimSpace(c.Text()) } else { v.name = strings.TrimPrefix(v.originalName, f.trimPrefix) } f.values = append(f.values, v) } } return false } // Helpers // usize returns the number of bits of the smallest unsigned integer // type that will hold n. Used to create the smallest possible slice of // integers to use as indexes into the concatenated strings. func usize(n int) int { switch { case n < 1<<8: return 8 case n < 1<<16: return 16 default: // 2^32 is enough constants for anyone. return 32 } } // declareIndexAndNameVars declares the index slices and concatenated names // strings representing the runs of values. func (g *Generator) declareIndexAndNameVars(runs [][]Value, typeName string) { var indexes, names []string for i, run := range runs { index, name := g.createIndexAndNameDecl(run, typeName, fmt.Sprintf("_%d", i)) if len(run) != 1 { indexes = append(indexes, index) } names = append(names, name) } g.Printf("const (\n") for _, name := range names { g.Printf("\t%s\n", name) } g.Printf(")\n\n") if len(indexes) > 0 { g.Printf("var (") for _, index := range indexes { g.Printf("\t%s\n", index) } g.Printf(")\n\n") } } // declareIndexAndNameVar is the single-run version of declareIndexAndNameVars func (g *Generator) declareIndexAndNameVar(run []Value, typeName string) { index, name := g.createIndexAndNameDecl(run, typeName, "") g.Printf("const %s\n", name) g.Printf("var %s\n", index) } // createIndexAndNameDecl returns the pair of declarations for the run. The caller will add "const" and "var". func (g *Generator) createIndexAndNameDecl(run []Value, typeName string, suffix string) (string, string) { b := new(bytes.Buffer) indexes := make([]int, len(run)) for i := range run { b.WriteString(run[i].name) indexes[i] = b.Len() } nameConst := fmt.Sprintf("_%s_name%s = %q", typeName, suffix, b.String()) nameLen := b.Len() b.Reset() fmt.Fprintf(b, "_%s_index%s = [...]uint%d{0, ", typeName, suffix, usize(nameLen)) for i, v := range indexes { if i > 0 { fmt.Fprintf(b, ", ") } fmt.Fprintf(b, "%d", v) } fmt.Fprintf(b, "}") return b.String(), nameConst } // declareNameVars declares the concatenated names string representing all the values in the runs. func (g *Generator) declareNameVars(runs [][]Value, typeName string, suffix string) { g.Printf("const _%s_name%s = \"", typeName, suffix) for _, run := range runs { for i := range run { g.Printf("%s", run[i].name) } } g.Printf("\"\n") } // buildOneRun generates the variables and String method for a single run of contiguous values. func (g *Generator) buildOneRun(runs [][]Value, typeName string) { values := runs[0] g.Printf("\n") g.declareIndexAndNameVar(values, typeName) // The generated code is simple enough to write as a Printf format. lessThanZero := "" if values[0].signed { lessThanZero = "i < 0 || " } if values[0].value == 0 { // Signed or unsigned, 0 is still 0. g.Printf(stringOneRun, typeName, usize(len(values)), lessThanZero) } else { g.Printf(stringOneRunWithOffset, typeName, values[0].String(), usize(len(values)), lessThanZero) } } // Arguments to format are: // // [1]: type name // [2]: size of index element (8 for uint8 etc.) // [3]: less than zero check (for signed types) const stringOneRun = `func (i %[1]s) String() string { if %[3]si >= %[1]s(len(_%[1]s_index)-1) { return "%[1]s(" + strconv.FormatInt(int64(i), 10) + ")" } return _%[1]s_name[_%[1]s_index[i]:_%[1]s_index[i+1]] } ` // Arguments to format are: // [1]: type name // [2]: lowest defined value for type, as a string // [3]: size of index element (8 for uint8 etc.) // [4]: less than zero check (for signed types) /* */ const stringOneRunWithOffset = `func (i %[1]s) String() string { i -= %[2]s if %[4]si >= %[1]s(len(_%[1]s_index)-1) { return "%[1]s(" + strconv.FormatInt(int64(i + %[2]s), 10) + ")" } return _%[1]s_name[_%[1]s_index[i] : _%[1]s_index[i+1]] } ` // buildMultipleRuns generates the variables and String method for multiple runs of contiguous values. // For this pattern, a single Printf format won't do. func (g *Generator) buildMultipleRuns(runs [][]Value, typeName string) { g.Printf("\n") g.declareIndexAndNameVars(runs, typeName) g.Printf("func (i %s) String() string {\n", typeName) g.Printf("\tswitch {\n") for i, values := range runs { if len(values) == 1 { g.Printf("\tcase i == %s:\n", &values[0]) g.Printf("\t\treturn _%s_name_%d\n", typeName, i) continue } if values[0].value == 0 && !values[0].signed { // For an unsigned lower bound of 0, "0 <= i" would be redundant. g.Printf("\tcase i <= %s:\n", &values[len(values)-1]) } else { g.Printf("\tcase %s <= i && i <= %s:\n", &values[0], &values[len(values)-1]) } if values[0].value != 0 { g.Printf("\t\ti -= %s\n", &values[0]) } g.Printf("\t\treturn _%s_name_%d[_%s_index_%d[i]:_%s_index_%d[i+1]]\n", typeName, i, typeName, i, typeName, i) } g.Printf("\tdefault:\n") g.Printf("\t\treturn \"%s(\" + strconv.FormatInt(int64(i), 10) + \")\"\n", typeName) g.Printf("\t}\n") g.Printf("}\n") } // buildMap handles the case where the space is so sparse a map is a reasonable fallback. // It's a rare situation but has simple code. func (g *Generator) buildMap(runs [][]Value, typeName string) { g.Printf("\n") g.declareNameVars(runs, typeName, "") g.Printf("\nvar _%s_map = map[%s]string{\n", typeName, typeName) n := 0 for _, values := range runs { for _, value := range values { g.Printf("\t%s: _%s_name[%d:%d],\n", &value, typeName, n, n+len(value.name)) n += len(value.name) } } g.Printf("}\n\n") g.Printf(stringMap, typeName) } // Argument to format is the type name. const stringMap = `func (i %[1]s) String() string { if str, ok := _%[1]s_map[i]; ok { return str } return "%[1]s(" + strconv.FormatInt(int64(i), 10) + ")" } `