package chroma import ( "fmt" "os" "path/filepath" "regexp" "sort" "strings" "sync" "time" "unicode/utf8" "github.com/dlclark/regexp2" ) // A Rule is the fundamental matching unit of the Regex lexer state machine. type Rule struct { Pattern string Type Emitter Mutator Mutator } // Words creates a regex that matches any of the given literal words. func Words(prefix, suffix string, words ...string) string { sort.Slice(words, func(i, j int) bool { return len(words[j]) < len(words[i]) }) for i, word := range words { words[i] = regexp.QuoteMeta(word) } return prefix + `(` + strings.Join(words, `|`) + `)` + suffix } // Tokenise text using lexer, returning tokens as a slice. func Tokenise(lexer Lexer, options *TokeniseOptions, text string) ([]Token, error) { var out []Token it, err := lexer.Tokenise(options, text) if err != nil { return nil, err } for t := it(); t != EOF; t = it() { out = append(out, t) } return out, nil } // Rules maps from state to a sequence of Rules. type Rules map[string][]Rule // Rename clones rules then a rule. func (r Rules) Rename(oldRule, newRule string) Rules { r = r.Clone() r[newRule] = r[oldRule] delete(r, oldRule) return r } // Clone returns a clone of the Rules. func (r Rules) Clone() Rules { out := map[string][]Rule{} for key, rules := range r { out[key] = make([]Rule, len(rules)) copy(out[key], rules) } return out } // Merge creates a clone of "r" then merges "rules" into the clone. func (r Rules) Merge(rules Rules) Rules { out := r.Clone() for k, v := range rules.Clone() { out[k] = v } return out } // MustNewLexer creates a new Lexer with deferred rules generation or panics. func MustNewLexer(config *Config, rules func() Rules) *RegexLexer { lexer, err := NewLexer(config, rules) if err != nil { panic(err) } return lexer } // NewLexer creates a new regex-based Lexer. // // "rules" is a state machine transition map. Each key is a state. Values are sets of rules // that match input, optionally modify lexer state, and output tokens. func NewLexer(config *Config, rulesFunc func() Rules) (*RegexLexer, error) { if config == nil { config = &Config{} } for _, glob := range append(config.Filenames, config.AliasFilenames...) { _, err := filepath.Match(glob, "") if err != nil { return nil, fmt.Errorf("%s: %q is not a valid glob: %w", config.Name, glob, err) } } r := &RegexLexer{ config: config, fetchRulesFunc: func() (Rules, error) { return rulesFunc(), nil }, } // One-off code to generate XML lexers in the Chroma source tree. // var nameCleanRe = regexp.MustCompile(`[^-+A-Za-z0-9_]`) // name := strings.ToLower(nameCleanRe.ReplaceAllString(config.Name, "_")) // data, err := Marshal(r) // if err != nil { // if errors.Is(err, ErrNotSerialisable) { // fmt.Fprintf(os.Stderr, "warning: %q: %s\n", name, err) // return r, nil // } // return nil, err // } // _, file, _, ok := runtime.Caller(2) // if !ok { // panic("??") // } // fmt.Println(file) // if strings.Contains(file, "/lexers/") { // dir := filepath.Join(filepath.Dir(file), "embedded") // err = os.MkdirAll(dir, 0700) // if err != nil { // return nil, err // } // filename := filepath.Join(dir, name) + ".xml" // fmt.Println(filename) // err = ioutil.WriteFile(filename, data, 0600) // if err != nil { // return nil, err // } // } return r, nil } // Trace enables debug tracing. func (r *RegexLexer) Trace(trace bool) *RegexLexer { r.trace = trace return r } // A CompiledRule is a Rule with a pre-compiled regex. // // Note that regular expressions are lazily compiled on first use of the lexer. type CompiledRule struct { Rule Regexp *regexp2.Regexp flags string } // CompiledRules is a map of rule name to sequence of compiled rules in that rule. type CompiledRules map[string][]*CompiledRule // LexerState contains the state for a single lex. type LexerState struct { Lexer *RegexLexer Registry *LexerRegistry Text []rune Pos int Rules CompiledRules Stack []string State string Rule int // Group matches. Groups []string // Named Group matches. NamedGroups map[string]string // Custum context for mutators. MutatorContext map[interface{}]interface{} iteratorStack []Iterator options *TokeniseOptions newlineAdded bool } // Set mutator context. func (l *LexerState) Set(key interface{}, value interface{}) { l.MutatorContext[key] = value } // Get mutator context. func (l *LexerState) Get(key interface{}) interface{} { return l.MutatorContext[key] } // Iterator returns the next Token from the lexer. func (l *LexerState) Iterator() Token { // nolint: gocognit end := len(l.Text) if l.newlineAdded { end-- } for l.Pos < end && len(l.Stack) > 0 { // Exhaust the iterator stack, if any. for len(l.iteratorStack) > 0 { n := len(l.iteratorStack) - 1 t := l.iteratorStack[n]() if t == EOF { l.iteratorStack = l.iteratorStack[:n] continue } return t } l.State = l.Stack[len(l.Stack)-1] if l.Lexer.trace { fmt.Fprintf(os.Stderr, "%s: pos=%d, text=%q\n", l.State, l.Pos, string(l.Text[l.Pos:])) } selectedRule, ok := l.Rules[l.State] if !ok { panic("unknown state " + l.State) } ruleIndex, rule, groups, namedGroups := matchRules(l.Text, l.Pos, selectedRule) // No match. if groups == nil { // From Pygments :\ // // If the RegexLexer encounters a newline that is flagged as an error token, the stack is // emptied and the lexer continues scanning in the 'root' state. This can help producing // error-tolerant highlighting for erroneous input, e.g. when a single-line string is not // closed. if l.Text[l.Pos] == '\n' && l.State != l.options.State { l.Stack = []string{l.options.State} continue } l.Pos++ return Token{Error, string(l.Text[l.Pos-1 : l.Pos])} } l.Rule = ruleIndex l.Groups = groups l.NamedGroups = namedGroups l.Pos += utf8.RuneCountInString(groups[0]) if rule.Mutator != nil { if err := rule.Mutator.Mutate(l); err != nil { panic(err) } } if rule.Type != nil { l.iteratorStack = append(l.iteratorStack, rule.Type.Emit(l.Groups, l)) } } // Exhaust the IteratorStack, if any. // Duplicate code, but eh. for len(l.iteratorStack) > 0 { n := len(l.iteratorStack) - 1 t := l.iteratorStack[n]() if t == EOF { l.iteratorStack = l.iteratorStack[:n] continue } return t } // If we get to here and we still have text, return it as an error. if l.Pos != len(l.Text) && len(l.Stack) == 0 { value := string(l.Text[l.Pos:]) l.Pos = len(l.Text) return Token{Type: Error, Value: value} } return EOF } // RegexLexer is the default lexer implementation used in Chroma. type RegexLexer struct { registry *LexerRegistry // The LexerRegistry this Lexer is associated with, if any. config *Config analyser func(text string) float32 trace bool mu sync.Mutex compiled bool rawRules Rules rules map[string][]*CompiledRule fetchRulesFunc func() (Rules, error) compileOnce sync.Once } func (r *RegexLexer) String() string { return r.config.Name } // Rules in the Lexer. func (r *RegexLexer) Rules() (Rules, error) { if err := r.needRules(); err != nil { return nil, err } return r.rawRules, nil } // SetRegistry the lexer will use to lookup other lexers if necessary. func (r *RegexLexer) SetRegistry(registry *LexerRegistry) Lexer { r.registry = registry return r } // SetAnalyser sets the analyser function used to perform content inspection. func (r *RegexLexer) SetAnalyser(analyser func(text string) float32) Lexer { r.analyser = analyser return r } // AnalyseText scores how likely a fragment of text is to match this lexer, between 0.0 and 1.0. func (r *RegexLexer) AnalyseText(text string) float32 { if r.analyser != nil { return r.analyser(text) } return 0 } // SetConfig replaces the Config for this Lexer. func (r *RegexLexer) SetConfig(config *Config) *RegexLexer { r.config = config return r } // Config returns the Config for this Lexer. func (r *RegexLexer) Config() *Config { return r.config } // Regex compilation is deferred until the lexer is used. This is to avoid significant init() time costs. func (r *RegexLexer) maybeCompile() (err error) { r.mu.Lock() defer r.mu.Unlock() if r.compiled { return nil } for state, rules := range r.rules { for i, rule := range rules { if rule.Regexp == nil { pattern := "(?:" + rule.Pattern + ")" if rule.flags != "" { pattern = "(?" + rule.flags + ")" + pattern } pattern = `\G` + pattern rule.Regexp, err = regexp2.Compile(pattern, 0) if err != nil { return fmt.Errorf("failed to compile rule %s.%d: %s", state, i, err) } rule.Regexp.MatchTimeout = time.Millisecond * 250 } } } restart: seen := map[LexerMutator]bool{} for state := range r.rules { for i := 0; i < len(r.rules[state]); i++ { rule := r.rules[state][i] if compile, ok := rule.Mutator.(LexerMutator); ok { if seen[compile] { return fmt.Errorf("saw mutator %T twice; this should not happen", compile) } seen[compile] = true if err := compile.MutateLexer(r.rules, state, i); err != nil { return err } // Process the rules again in case the mutator added/removed rules. // // This sounds bad, but shouldn't be significant in practice. goto restart } } } r.compiled = true return nil } func (r *RegexLexer) fetchRules() error { rules, err := r.fetchRulesFunc() if err != nil { return fmt.Errorf("%s: failed to compile rules: %w", r.config.Name, err) } if _, ok := rules["root"]; !ok { return fmt.Errorf("no \"root\" state") } compiledRules := map[string][]*CompiledRule{} for state, rules := range rules { compiledRules[state] = nil for _, rule := range rules { flags := "" if !r.config.NotMultiline { flags += "m" } if r.config.CaseInsensitive { flags += "i" } if r.config.DotAll { flags += "s" } compiledRules[state] = append(compiledRules[state], &CompiledRule{Rule: rule, flags: flags}) } } r.rawRules = rules r.rules = compiledRules return nil } func (r *RegexLexer) needRules() error { var err error if r.fetchRulesFunc != nil { r.compileOnce.Do(func() { err = r.fetchRules() }) } if err := r.maybeCompile(); err != nil { return err } return err } // Tokenise text using lexer, returning an iterator. func (r *RegexLexer) Tokenise(options *TokeniseOptions, text string) (Iterator, error) { err := r.needRules() if err != nil { return nil, err } if options == nil { options = defaultOptions } if options.EnsureLF { text = ensureLF(text) } newlineAdded := false if !options.Nested && r.config.EnsureNL && !strings.HasSuffix(text, "\n") { text += "\n" newlineAdded = true } state := &LexerState{ Registry: r.registry, newlineAdded: newlineAdded, options: options, Lexer: r, Text: []rune(text), Stack: []string{options.State}, Rules: r.rules, MutatorContext: map[interface{}]interface{}{}, } return state.Iterator, nil } // MustRules is like Rules() but will panic on error. func (r *RegexLexer) MustRules() Rules { rules, err := r.Rules() if err != nil { panic(err) } return rules } func matchRules(text []rune, pos int, rules []*CompiledRule) (int, *CompiledRule, []string, map[string]string) { for i, rule := range rules { match, err := rule.Regexp.FindRunesMatchStartingAt(text, pos) if match != nil && err == nil && match.Index == pos { groups := []string{} namedGroups := make(map[string]string) for _, g := range match.Groups() { namedGroups[g.Name] = g.String() groups = append(groups, g.String()) } return i, rule, groups, namedGroups } } return 0, &CompiledRule{}, nil, nil } // replace \r and \r\n with \n // same as strings.ReplaceAll but more efficient func ensureLF(text string) string { buf := make([]byte, len(text)) var j int for i := 0; i < len(text); i++ { c := text[i] if c == '\r' { if i < len(text)-1 && text[i+1] == '\n' { continue } c = '\n' } buf[j] = c j++ } return string(buf[:j]) }