// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package sha1cd implements collision detection based on the whitepaper // Counter-cryptanalysis from Marc Stevens. The original ubc implementation // was done by Marc Stevens and Dan Shumow, and can be found at: // https://github.com/cr-marcstevens/sha1collisiondetection package sha1cd // This SHA1 implementation is based on Go's generic SHA1. // Original: https://github.com/golang/go/blob/master/src/crypto/sha1/sha1.go import ( "crypto" "encoding/binary" "errors" "hash" shared "github.com/pjbgf/sha1cd/internal" ) func init() { crypto.RegisterHash(crypto.SHA1, New) } // The size of a SHA-1 checksum in bytes. const Size = shared.Size // The blocksize of SHA-1 in bytes. const BlockSize = shared.Chunk // digest represents the partial evaluation of a checksum. type digest struct { h [shared.WordBuffers]uint32 x [shared.Chunk]byte nx int len uint64 // col defines whether a collision has been found. col bool blockFunc func(dig *digest, p []byte) } func (d *digest) MarshalBinary() ([]byte, error) { b := make([]byte, 0, shared.MarshaledSize) b = append(b, shared.Magic...) b = appendUint32(b, d.h[0]) b = appendUint32(b, d.h[1]) b = appendUint32(b, d.h[2]) b = appendUint32(b, d.h[3]) b = appendUint32(b, d.h[4]) b = append(b, d.x[:d.nx]...) b = b[:len(b)+len(d.x)-d.nx] // already zero b = appendUint64(b, d.len) return b, nil } func appendUint32(b []byte, v uint32) []byte { return append(b, byte(v>>24), byte(v>>16), byte(v>>8), byte(v), ) } func appendUint64(b []byte, v uint64) []byte { return append(b, byte(v>>56), byte(v>>48), byte(v>>40), byte(v>>32), byte(v>>24), byte(v>>16), byte(v>>8), byte(v), ) } func (d *digest) UnmarshalBinary(b []byte) error { if len(b) < len(shared.Magic) || string(b[:len(shared.Magic)]) != shared.Magic { return errors.New("crypto/sha1: invalid hash state identifier") } if len(b) != shared.MarshaledSize { return errors.New("crypto/sha1: invalid hash state size") } b = b[len(shared.Magic):] b, d.h[0] = consumeUint32(b) b, d.h[1] = consumeUint32(b) b, d.h[2] = consumeUint32(b) b, d.h[3] = consumeUint32(b) b, d.h[4] = consumeUint32(b) b = b[copy(d.x[:], b):] b, d.len = consumeUint64(b) d.nx = int(d.len % shared.Chunk) return nil } func consumeUint64(b []byte) ([]byte, uint64) { _ = b[7] x := uint64(b[7]) | uint64(b[6])<<8 | uint64(b[shared.WordBuffers])<<16 | uint64(b[4])<<24 | uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56 return b[8:], x } func consumeUint32(b []byte) ([]byte, uint32) { _ = b[3] x := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 return b[4:], x } func (d *digest) Reset() { d.h[0] = shared.Init0 d.h[1] = shared.Init1 d.h[2] = shared.Init2 d.h[3] = shared.Init3 d.h[4] = shared.Init4 d.nx = 0 d.len = 0 d.col = false } // New returns a new hash.Hash computing the SHA1 checksum. The Hash also // implements encoding.BinaryMarshaler and encoding.BinaryUnmarshaler to // marshal and unmarshal the internal state of the hash. func New() hash.Hash { d := new(digest) d.blockFunc = block d.Reset() return d } // NewGeneric is equivalent to New but uses the Go generic implementation, // avoiding any processor-specific optimizations. func NewGeneric() hash.Hash { d := new(digest) d.blockFunc = blockGeneric d.Reset() return d } func (d *digest) Size() int { return Size } func (d *digest) BlockSize() int { return BlockSize } func (d *digest) Write(p []byte) (nn int, err error) { if len(p) == 0 { return } nn = len(p) d.len += uint64(nn) if d.nx > 0 { n := copy(d.x[d.nx:], p) d.nx += n if d.nx == shared.Chunk { d.blockFunc(d, d.x[:]) d.nx = 0 } p = p[n:] } if len(p) >= shared.Chunk { n := len(p) &^ (shared.Chunk - 1) d.blockFunc(d, p[:n]) p = p[n:] } if len(p) > 0 { d.nx = copy(d.x[:], p) } return } func (d *digest) Sum(in []byte) []byte { // Make a copy of d so that caller can keep writing and summing. d0 := *d hash := d0.checkSum() return append(in, hash[:]...) } func (d *digest) checkSum() [Size]byte { len := d.len // Padding. Add a 1 bit and 0 bits until 56 bytes mod 64. var tmp [64]byte tmp[0] = 0x80 if len%64 < 56 { d.Write(tmp[0 : 56-len%64]) } else { d.Write(tmp[0 : 64+56-len%64]) } // Length in bits. len <<= 3 binary.BigEndian.PutUint64(tmp[:], len) d.Write(tmp[0:8]) if d.nx != 0 { panic("d.nx != 0") } var digest [Size]byte binary.BigEndian.PutUint32(digest[0:], d.h[0]) binary.BigEndian.PutUint32(digest[4:], d.h[1]) binary.BigEndian.PutUint32(digest[8:], d.h[2]) binary.BigEndian.PutUint32(digest[12:], d.h[3]) binary.BigEndian.PutUint32(digest[16:], d.h[4]) return digest } // Sum returns the SHA-1 checksum of the data. func Sum(data []byte) ([Size]byte, bool) { d := New().(*digest) d.Write(data) return d.checkSum(), d.col } func (d *digest) CollisionResistantSum(in []byte) ([]byte, bool) { // Make a copy of d so that caller can keep writing and summing. d0 := *d hash := d0.checkSum() return append(in, hash[:]...), d0.col }