mirror of
https://github.com/cheat/cheat.git
synced 2024-10-31 21:21:02 +01:00
80c91cbdee
Integrate `go-git` into the application, and use it to `git clone` cheatsheets when the installer runs. Previously, the installer required that `git` be installed on the system `PATH`, so this change has to big advantages: 1. It removes that system dependency on `git` 2. It paves the way for implementing the `--update` command Additionally, `cheat` now performs a `--depth=1` clone when installing cheatsheets, which should at least somewhat improve installation times (especially on slow network connections).
141 lines
3.3 KiB
Go
141 lines
3.3 KiB
Go
package conv
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"fmt"
|
|
"math/big"
|
|
"strings"
|
|
)
|
|
|
|
// BytesLe2Hex returns an hexadecimal string of a number stored in a
|
|
// little-endian order slice x.
|
|
func BytesLe2Hex(x []byte) string {
|
|
b := &strings.Builder{}
|
|
b.Grow(2*len(x) + 2)
|
|
fmt.Fprint(b, "0x")
|
|
if len(x) == 0 {
|
|
fmt.Fprint(b, "00")
|
|
}
|
|
for i := len(x) - 1; i >= 0; i-- {
|
|
fmt.Fprintf(b, "%02x", x[i])
|
|
}
|
|
return b.String()
|
|
}
|
|
|
|
// BytesLe2BigInt converts a little-endian slice x into a big-endian
|
|
// math/big.Int.
|
|
func BytesLe2BigInt(x []byte) *big.Int {
|
|
n := len(x)
|
|
b := new(big.Int)
|
|
if len(x) > 0 {
|
|
y := make([]byte, n)
|
|
for i := 0; i < n; i++ {
|
|
y[n-1-i] = x[i]
|
|
}
|
|
b.SetBytes(y)
|
|
}
|
|
return b
|
|
}
|
|
|
|
// BytesBe2Uint64Le converts a big-endian slice x to a little-endian slice of uint64.
|
|
func BytesBe2Uint64Le(x []byte) []uint64 {
|
|
l := len(x)
|
|
z := make([]uint64, (l+7)/8)
|
|
blocks := l / 8
|
|
for i := 0; i < blocks; i++ {
|
|
z[i] = binary.BigEndian.Uint64(x[l-8*(i+1):])
|
|
}
|
|
remBytes := l % 8
|
|
for i := 0; i < remBytes; i++ {
|
|
z[blocks] |= uint64(x[l-1-8*blocks-i]) << uint(8*i)
|
|
}
|
|
return z
|
|
}
|
|
|
|
// BigInt2BytesLe stores a positive big.Int number x into a little-endian slice z.
|
|
// The slice is modified if the bitlength of x <= 8*len(z) (padding with zeros).
|
|
// If x does not fit in the slice or is negative, z is not modified.
|
|
func BigInt2BytesLe(z []byte, x *big.Int) {
|
|
xLen := (x.BitLen() + 7) >> 3
|
|
zLen := len(z)
|
|
if zLen >= xLen && x.Sign() >= 0 {
|
|
y := x.Bytes()
|
|
for i := 0; i < xLen; i++ {
|
|
z[i] = y[xLen-1-i]
|
|
}
|
|
for i := xLen; i < zLen; i++ {
|
|
z[i] = 0
|
|
}
|
|
}
|
|
}
|
|
|
|
// Uint64Le2BigInt converts a little-endian slice x into a big number.
|
|
func Uint64Le2BigInt(x []uint64) *big.Int {
|
|
n := len(x)
|
|
b := new(big.Int)
|
|
var bi big.Int
|
|
for i := n - 1; i >= 0; i-- {
|
|
bi.SetUint64(x[i])
|
|
b.Lsh(b, 64)
|
|
b.Add(b, &bi)
|
|
}
|
|
return b
|
|
}
|
|
|
|
// Uint64Le2BytesLe converts a little-endian slice x to a little-endian slice of bytes.
|
|
func Uint64Le2BytesLe(x []uint64) []byte {
|
|
b := make([]byte, 8*len(x))
|
|
n := len(x)
|
|
for i := 0; i < n; i++ {
|
|
binary.LittleEndian.PutUint64(b[i*8:], x[i])
|
|
}
|
|
return b
|
|
}
|
|
|
|
// Uint64Le2BytesBe converts a little-endian slice x to a big-endian slice of bytes.
|
|
func Uint64Le2BytesBe(x []uint64) []byte {
|
|
b := make([]byte, 8*len(x))
|
|
n := len(x)
|
|
for i := 0; i < n; i++ {
|
|
binary.BigEndian.PutUint64(b[i*8:], x[n-1-i])
|
|
}
|
|
return b
|
|
}
|
|
|
|
// Uint64Le2Hex returns an hexadecimal string of a number stored in a
|
|
// little-endian order slice x.
|
|
func Uint64Le2Hex(x []uint64) string {
|
|
b := new(strings.Builder)
|
|
b.Grow(16*len(x) + 2)
|
|
fmt.Fprint(b, "0x")
|
|
if len(x) == 0 {
|
|
fmt.Fprint(b, "00")
|
|
}
|
|
for i := len(x) - 1; i >= 0; i-- {
|
|
fmt.Fprintf(b, "%016x", x[i])
|
|
}
|
|
return b.String()
|
|
}
|
|
|
|
// BigInt2Uint64Le stores a positive big.Int number x into a little-endian slice z.
|
|
// The slice is modified if the bitlength of x <= 8*len(z) (padding with zeros).
|
|
// If x does not fit in the slice or is negative, z is not modified.
|
|
func BigInt2Uint64Le(z []uint64, x *big.Int) {
|
|
xLen := (x.BitLen() + 63) >> 6 // number of 64-bit words
|
|
zLen := len(z)
|
|
if zLen >= xLen && x.Sign() > 0 {
|
|
var y, yi big.Int
|
|
y.Set(x)
|
|
two64 := big.NewInt(1)
|
|
two64.Lsh(two64, 64).Sub(two64, big.NewInt(1))
|
|
for i := 0; i < xLen; i++ {
|
|
yi.And(&y, two64)
|
|
z[i] = yi.Uint64()
|
|
y.Rsh(&y, 64)
|
|
}
|
|
}
|
|
for i := xLen; i < zLen; i++ {
|
|
z[i] = 0
|
|
}
|
|
}
|