cheat/vendor/github.com/cloudflare/circl/dh/x448/curve.go
Christopher Allen Lane 80c91cbdee feat(installer): use go-git to clone
Integrate `go-git` into the application, and use it to `git clone`
cheatsheets when the installer runs.

Previously, the installer required that `git` be installed on the system
`PATH`, so this change has to big advantages:

1. It removes that system dependency on `git`
2. It paves the way for implementing the `--update` command

Additionally, `cheat` now performs a `--depth=1` clone when installing
cheatsheets, which should at least somewhat improve installation times
(especially on slow network connections).
2022-08-27 21:00:46 -04:00

104 lines
3.4 KiB
Go

package x448
import (
fp "github.com/cloudflare/circl/math/fp448"
)
// ladderJoye calculates a fixed-point multiplication with the generator point.
// The algorithm is the right-to-left Joye's ladder as described
// in "How to precompute a ladder" in SAC'2017.
func ladderJoye(k *Key) {
w := [5]fp.Elt{} // [mu,x1,z1,x2,z2] order must be preserved.
w[1] = fp.Elt{ // x1 = S
0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
}
fp.SetOne(&w[2]) // z1 = 1
w[3] = fp.Elt{ // x2 = G-S
0x20, 0x27, 0x9d, 0xc9, 0x7d, 0x19, 0xb1, 0xac,
0xf8, 0xba, 0x69, 0x1c, 0xff, 0x33, 0xac, 0x23,
0x51, 0x1b, 0xce, 0x3a, 0x64, 0x65, 0xbd, 0xf1,
0x23, 0xf8, 0xc1, 0x84, 0x9d, 0x45, 0x54, 0x29,
0x67, 0xb9, 0x81, 0x1c, 0x03, 0xd1, 0xcd, 0xda,
0x7b, 0xeb, 0xff, 0x1a, 0x88, 0x03, 0xcf, 0x3a,
0x42, 0x44, 0x32, 0x01, 0x25, 0xb7, 0xfa, 0xf0,
}
fp.SetOne(&w[4]) // z2 = 1
const n = 448
const h = 2
swap := uint(1)
for s := 0; s < n-h; s++ {
i := (s + h) / 8
j := (s + h) % 8
bit := uint((k[i] >> uint(j)) & 1)
copy(w[0][:], tableGenerator[s*Size:(s+1)*Size])
diffAdd(&w, swap^bit)
swap = bit
}
for s := 0; s < h; s++ {
double(&w[1], &w[2])
}
toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
}
// ladderMontgomery calculates a generic scalar point multiplication
// The algorithm implemented is the left-to-right Montgomery's ladder.
func ladderMontgomery(k, xP *Key) {
w := [5]fp.Elt{} // [x1, x2, z2, x3, z3] order must be preserved.
w[0] = *(*fp.Elt)(xP) // x1 = xP
fp.SetOne(&w[1]) // x2 = 1
w[3] = *(*fp.Elt)(xP) // x3 = xP
fp.SetOne(&w[4]) // z3 = 1
move := uint(0)
for s := 448 - 1; s >= 0; s-- {
i := s / 8
j := s % 8
bit := uint((k[i] >> uint(j)) & 1)
ladderStep(&w, move^bit)
move = bit
}
toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
}
func toAffine(k *[fp.Size]byte, x, z *fp.Elt) {
fp.Inv(z, z)
fp.Mul(x, x, z)
_ = fp.ToBytes(k[:], x)
}
var lowOrderPoints = [3]fp.Elt{
{ /* (0,_,1) point of order 2 on Curve448 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{ /* (1,_,1) a point of order 4 on the twist of Curve448 */
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{ /* (-1,_,1) point of order 4 on Curve448 */
0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
},
}