mirror of
https://github.com/cheat/cheat.git
synced 2024-11-17 01:18:29 +01:00
80c91cbdee
Integrate `go-git` into the application, and use it to `git clone` cheatsheets when the installer runs. Previously, the installer required that `git` be installed on the system `PATH`, so this change has to big advantages: 1. It removes that system dependency on `git` 2. It paves the way for implementing the `--update` command Additionally, `cheat` now performs a `--depth=1` clone when installing cheatsheets, which should at least somewhat improve installation times (especially on slow network connections).
104 lines
3.4 KiB
Go
104 lines
3.4 KiB
Go
package x448
|
|
|
|
import (
|
|
fp "github.com/cloudflare/circl/math/fp448"
|
|
)
|
|
|
|
// ladderJoye calculates a fixed-point multiplication with the generator point.
|
|
// The algorithm is the right-to-left Joye's ladder as described
|
|
// in "How to precompute a ladder" in SAC'2017.
|
|
func ladderJoye(k *Key) {
|
|
w := [5]fp.Elt{} // [mu,x1,z1,x2,z2] order must be preserved.
|
|
w[1] = fp.Elt{ // x1 = S
|
|
0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
}
|
|
fp.SetOne(&w[2]) // z1 = 1
|
|
w[3] = fp.Elt{ // x2 = G-S
|
|
0x20, 0x27, 0x9d, 0xc9, 0x7d, 0x19, 0xb1, 0xac,
|
|
0xf8, 0xba, 0x69, 0x1c, 0xff, 0x33, 0xac, 0x23,
|
|
0x51, 0x1b, 0xce, 0x3a, 0x64, 0x65, 0xbd, 0xf1,
|
|
0x23, 0xf8, 0xc1, 0x84, 0x9d, 0x45, 0x54, 0x29,
|
|
0x67, 0xb9, 0x81, 0x1c, 0x03, 0xd1, 0xcd, 0xda,
|
|
0x7b, 0xeb, 0xff, 0x1a, 0x88, 0x03, 0xcf, 0x3a,
|
|
0x42, 0x44, 0x32, 0x01, 0x25, 0xb7, 0xfa, 0xf0,
|
|
}
|
|
fp.SetOne(&w[4]) // z2 = 1
|
|
|
|
const n = 448
|
|
const h = 2
|
|
swap := uint(1)
|
|
for s := 0; s < n-h; s++ {
|
|
i := (s + h) / 8
|
|
j := (s + h) % 8
|
|
bit := uint((k[i] >> uint(j)) & 1)
|
|
copy(w[0][:], tableGenerator[s*Size:(s+1)*Size])
|
|
diffAdd(&w, swap^bit)
|
|
swap = bit
|
|
}
|
|
for s := 0; s < h; s++ {
|
|
double(&w[1], &w[2])
|
|
}
|
|
toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
|
|
}
|
|
|
|
// ladderMontgomery calculates a generic scalar point multiplication
|
|
// The algorithm implemented is the left-to-right Montgomery's ladder.
|
|
func ladderMontgomery(k, xP *Key) {
|
|
w := [5]fp.Elt{} // [x1, x2, z2, x3, z3] order must be preserved.
|
|
w[0] = *(*fp.Elt)(xP) // x1 = xP
|
|
fp.SetOne(&w[1]) // x2 = 1
|
|
w[3] = *(*fp.Elt)(xP) // x3 = xP
|
|
fp.SetOne(&w[4]) // z3 = 1
|
|
|
|
move := uint(0)
|
|
for s := 448 - 1; s >= 0; s-- {
|
|
i := s / 8
|
|
j := s % 8
|
|
bit := uint((k[i] >> uint(j)) & 1)
|
|
ladderStep(&w, move^bit)
|
|
move = bit
|
|
}
|
|
toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
|
|
}
|
|
|
|
func toAffine(k *[fp.Size]byte, x, z *fp.Elt) {
|
|
fp.Inv(z, z)
|
|
fp.Mul(x, x, z)
|
|
_ = fp.ToBytes(k[:], x)
|
|
}
|
|
|
|
var lowOrderPoints = [3]fp.Elt{
|
|
{ /* (0,_,1) point of order 2 on Curve448 */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
},
|
|
{ /* (1,_,1) a point of order 4 on the twist of Curve448 */
|
|
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
},
|
|
{ /* (-1,_,1) point of order 4 on Curve448 */
|
|
0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
},
|
|
}
|