mirror of
https://github.com/sharkdp/bat.git
synced 2024-11-01 04:21:01 +01:00
8472 lines
310 KiB
Python
Vendored
8472 lines
310 KiB
Python
Vendored
import collections.abc
|
|
import tempfile
|
|
import sys
|
|
import shutil
|
|
import warnings
|
|
import operator
|
|
import io
|
|
import itertools
|
|
import functools
|
|
import ctypes
|
|
import os
|
|
import gc
|
|
import weakref
|
|
import pytest
|
|
from contextlib import contextmanager
|
|
|
|
from numpy.compat import pickle
|
|
|
|
import pathlib
|
|
import builtins
|
|
from decimal import Decimal
|
|
|
|
import numpy as np
|
|
from numpy.compat import strchar
|
|
import numpy.core._multiarray_tests as _multiarray_tests
|
|
from numpy.testing import (
|
|
assert_, assert_raises, assert_warns, assert_equal, assert_almost_equal,
|
|
assert_array_equal, assert_raises_regex, assert_array_almost_equal,
|
|
assert_allclose, IS_PYPY, HAS_REFCOUNT, assert_array_less, runstring,
|
|
temppath, suppress_warnings, break_cycles,
|
|
)
|
|
from numpy.testing._private.utils import _no_tracing
|
|
from numpy.core.tests._locales import CommaDecimalPointLocale
|
|
|
|
# Need to test an object that does not fully implement math interface
|
|
from datetime import timedelta, datetime
|
|
|
|
|
|
def _aligned_zeros(shape, dtype=float, order="C", align=None):
|
|
"""
|
|
Allocate a new ndarray with aligned memory.
|
|
|
|
The ndarray is guaranteed *not* aligned to twice the requested alignment.
|
|
Eg, if align=4, guarantees it is not aligned to 8. If align=None uses
|
|
dtype.alignment."""
|
|
dtype = np.dtype(dtype)
|
|
if dtype == np.dtype(object):
|
|
# Can't do this, fall back to standard allocation (which
|
|
# should always be sufficiently aligned)
|
|
if align is not None:
|
|
raise ValueError("object array alignment not supported")
|
|
return np.zeros(shape, dtype=dtype, order=order)
|
|
if align is None:
|
|
align = dtype.alignment
|
|
if not hasattr(shape, '__len__'):
|
|
shape = (shape,)
|
|
size = functools.reduce(operator.mul, shape) * dtype.itemsize
|
|
buf = np.empty(size + 2*align + 1, np.uint8)
|
|
|
|
ptr = buf.__array_interface__['data'][0]
|
|
offset = ptr % align
|
|
if offset != 0:
|
|
offset = align - offset
|
|
if (ptr % (2*align)) == 0:
|
|
offset += align
|
|
|
|
# Note: slices producing 0-size arrays do not necessarily change
|
|
# data pointer --- so we use and allocate size+1
|
|
buf = buf[offset:offset+size+1][:-1]
|
|
data = np.ndarray(shape, dtype, buf, order=order)
|
|
data.fill(0)
|
|
return data
|
|
|
|
|
|
class TestFlags:
|
|
def setup(self):
|
|
self.a = np.arange(10)
|
|
|
|
def test_writeable(self):
|
|
mydict = locals()
|
|
self.a.flags.writeable = False
|
|
assert_raises(ValueError, runstring, 'self.a[0] = 3', mydict)
|
|
assert_raises(ValueError, runstring, 'self.a[0:1].itemset(3)', mydict)
|
|
self.a.flags.writeable = True
|
|
self.a[0] = 5
|
|
self.a[0] = 0
|
|
|
|
def test_writeable_any_base(self):
|
|
# Ensure that any base being writeable is sufficient to change flag;
|
|
# this is especially interesting for arrays from an array interface.
|
|
arr = np.arange(10)
|
|
|
|
class subclass(np.ndarray):
|
|
pass
|
|
|
|
# Create subclass so base will not be collapsed, this is OK to change
|
|
view1 = arr.view(subclass)
|
|
view2 = view1[...]
|
|
arr.flags.writeable = False
|
|
view2.flags.writeable = False
|
|
view2.flags.writeable = True # Can be set to True again.
|
|
|
|
arr = np.arange(10)
|
|
|
|
class frominterface:
|
|
def __init__(self, arr):
|
|
self.arr = arr
|
|
self.__array_interface__ = arr.__array_interface__
|
|
|
|
view1 = np.asarray(frominterface)
|
|
view2 = view1[...]
|
|
view2.flags.writeable = False
|
|
view2.flags.writeable = True
|
|
|
|
view1.flags.writeable = False
|
|
view2.flags.writeable = False
|
|
with assert_raises(ValueError):
|
|
# Must assume not writeable, since only base is not:
|
|
view2.flags.writeable = True
|
|
|
|
def test_writeable_from_readonly(self):
|
|
# gh-9440 - make sure fromstring, from buffer on readonly buffers
|
|
# set writeable False
|
|
data = b'\x00' * 100
|
|
vals = np.frombuffer(data, 'B')
|
|
assert_raises(ValueError, vals.setflags, write=True)
|
|
types = np.dtype( [('vals', 'u1'), ('res3', 'S4')] )
|
|
values = np.core.records.fromstring(data, types)
|
|
vals = values['vals']
|
|
assert_raises(ValueError, vals.setflags, write=True)
|
|
|
|
def test_writeable_from_buffer(self):
|
|
data = bytearray(b'\x00' * 100)
|
|
vals = np.frombuffer(data, 'B')
|
|
assert_(vals.flags.writeable)
|
|
vals.setflags(write=False)
|
|
assert_(vals.flags.writeable is False)
|
|
vals.setflags(write=True)
|
|
assert_(vals.flags.writeable)
|
|
types = np.dtype( [('vals', 'u1'), ('res3', 'S4')] )
|
|
values = np.core.records.fromstring(data, types)
|
|
vals = values['vals']
|
|
assert_(vals.flags.writeable)
|
|
vals.setflags(write=False)
|
|
assert_(vals.flags.writeable is False)
|
|
vals.setflags(write=True)
|
|
assert_(vals.flags.writeable)
|
|
|
|
@pytest.mark.skipif(IS_PYPY, reason="PyPy always copies")
|
|
def test_writeable_pickle(self):
|
|
import pickle
|
|
# Small arrays will be copied without setting base.
|
|
# See condition for using PyArray_SetBaseObject in
|
|
# array_setstate.
|
|
a = np.arange(1000)
|
|
for v in range(pickle.HIGHEST_PROTOCOL):
|
|
vals = pickle.loads(pickle.dumps(a, v))
|
|
assert_(vals.flags.writeable)
|
|
assert_(isinstance(vals.base, bytes))
|
|
|
|
def test_writeable_from_c_data(self):
|
|
# Test that the writeable flag can be changed for an array wrapping
|
|
# low level C-data, but not owning its data.
|
|
# Also see that this is deprecated to change from python.
|
|
from numpy.core._multiarray_tests import get_c_wrapping_array
|
|
|
|
arr_writeable = get_c_wrapping_array(True)
|
|
assert not arr_writeable.flags.owndata
|
|
assert arr_writeable.flags.writeable
|
|
view = arr_writeable[...]
|
|
|
|
# Toggling the writeable flag works on the view:
|
|
view.flags.writeable = False
|
|
assert not view.flags.writeable
|
|
view.flags.writeable = True
|
|
assert view.flags.writeable
|
|
# Flag can be unset on the arr_writeable:
|
|
arr_writeable.flags.writeable = False
|
|
|
|
arr_readonly = get_c_wrapping_array(False)
|
|
assert not arr_readonly.flags.owndata
|
|
assert not arr_readonly.flags.writeable
|
|
|
|
for arr in [arr_writeable, arr_readonly]:
|
|
view = arr[...]
|
|
view.flags.writeable = False # make sure it is readonly
|
|
arr.flags.writeable = False
|
|
assert not arr.flags.writeable
|
|
|
|
with assert_raises(ValueError):
|
|
view.flags.writeable = True
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("error", DeprecationWarning)
|
|
with assert_raises(DeprecationWarning):
|
|
arr.flags.writeable = True
|
|
|
|
with assert_warns(DeprecationWarning):
|
|
arr.flags.writeable = True
|
|
|
|
def test_warnonwrite(self):
|
|
a = np.arange(10)
|
|
a.flags._warn_on_write = True
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always')
|
|
a[1] = 10
|
|
a[2] = 10
|
|
# only warn once
|
|
assert_(len(w) == 1)
|
|
|
|
def test_otherflags(self):
|
|
assert_equal(self.a.flags.carray, True)
|
|
assert_equal(self.a.flags['C'], True)
|
|
assert_equal(self.a.flags.farray, False)
|
|
assert_equal(self.a.flags.behaved, True)
|
|
assert_equal(self.a.flags.fnc, False)
|
|
assert_equal(self.a.flags.forc, True)
|
|
assert_equal(self.a.flags.owndata, True)
|
|
assert_equal(self.a.flags.writeable, True)
|
|
assert_equal(self.a.flags.aligned, True)
|
|
with assert_warns(DeprecationWarning):
|
|
assert_equal(self.a.flags.updateifcopy, False)
|
|
with assert_warns(DeprecationWarning):
|
|
assert_equal(self.a.flags['U'], False)
|
|
assert_equal(self.a.flags['UPDATEIFCOPY'], False)
|
|
assert_equal(self.a.flags.writebackifcopy, False)
|
|
assert_equal(self.a.flags['X'], False)
|
|
assert_equal(self.a.flags['WRITEBACKIFCOPY'], False)
|
|
|
|
def test_string_align(self):
|
|
a = np.zeros(4, dtype=np.dtype('|S4'))
|
|
assert_(a.flags.aligned)
|
|
# not power of two are accessed byte-wise and thus considered aligned
|
|
a = np.zeros(5, dtype=np.dtype('|S4'))
|
|
assert_(a.flags.aligned)
|
|
|
|
def test_void_align(self):
|
|
a = np.zeros(4, dtype=np.dtype([("a", "i4"), ("b", "i4")]))
|
|
assert_(a.flags.aligned)
|
|
|
|
|
|
class TestHash:
|
|
# see #3793
|
|
def test_int(self):
|
|
for st, ut, s in [(np.int8, np.uint8, 8),
|
|
(np.int16, np.uint16, 16),
|
|
(np.int32, np.uint32, 32),
|
|
(np.int64, np.uint64, 64)]:
|
|
for i in range(1, s):
|
|
assert_equal(hash(st(-2**i)), hash(-2**i),
|
|
err_msg="%r: -2**%d" % (st, i))
|
|
assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)),
|
|
err_msg="%r: 2**%d" % (st, i - 1))
|
|
assert_equal(hash(st(2**i - 1)), hash(2**i - 1),
|
|
err_msg="%r: 2**%d - 1" % (st, i))
|
|
|
|
i = max(i - 1, 1)
|
|
assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)),
|
|
err_msg="%r: 2**%d" % (ut, i - 1))
|
|
assert_equal(hash(ut(2**i - 1)), hash(2**i - 1),
|
|
err_msg="%r: 2**%d - 1" % (ut, i))
|
|
|
|
|
|
class TestAttributes:
|
|
def setup(self):
|
|
self.one = np.arange(10)
|
|
self.two = np.arange(20).reshape(4, 5)
|
|
self.three = np.arange(60, dtype=np.float64).reshape(2, 5, 6)
|
|
|
|
def test_attributes(self):
|
|
assert_equal(self.one.shape, (10,))
|
|
assert_equal(self.two.shape, (4, 5))
|
|
assert_equal(self.three.shape, (2, 5, 6))
|
|
self.three.shape = (10, 3, 2)
|
|
assert_equal(self.three.shape, (10, 3, 2))
|
|
self.three.shape = (2, 5, 6)
|
|
assert_equal(self.one.strides, (self.one.itemsize,))
|
|
num = self.two.itemsize
|
|
assert_equal(self.two.strides, (5*num, num))
|
|
num = self.three.itemsize
|
|
assert_equal(self.three.strides, (30*num, 6*num, num))
|
|
assert_equal(self.one.ndim, 1)
|
|
assert_equal(self.two.ndim, 2)
|
|
assert_equal(self.three.ndim, 3)
|
|
num = self.two.itemsize
|
|
assert_equal(self.two.size, 20)
|
|
assert_equal(self.two.nbytes, 20*num)
|
|
assert_equal(self.two.itemsize, self.two.dtype.itemsize)
|
|
assert_equal(self.two.base, np.arange(20))
|
|
|
|
def test_dtypeattr(self):
|
|
assert_equal(self.one.dtype, np.dtype(np.int_))
|
|
assert_equal(self.three.dtype, np.dtype(np.float_))
|
|
assert_equal(self.one.dtype.char, 'l')
|
|
assert_equal(self.three.dtype.char, 'd')
|
|
assert_(self.three.dtype.str[0] in '<>')
|
|
assert_equal(self.one.dtype.str[1], 'i')
|
|
assert_equal(self.three.dtype.str[1], 'f')
|
|
|
|
def test_int_subclassing(self):
|
|
# Regression test for https://github.com/numpy/numpy/pull/3526
|
|
|
|
numpy_int = np.int_(0)
|
|
|
|
# int_ doesn't inherit from Python int, because it's not fixed-width
|
|
assert_(not isinstance(numpy_int, int))
|
|
|
|
def test_stridesattr(self):
|
|
x = self.one
|
|
|
|
def make_array(size, offset, strides):
|
|
return np.ndarray(size, buffer=x, dtype=int,
|
|
offset=offset*x.itemsize,
|
|
strides=strides*x.itemsize)
|
|
|
|
assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1]))
|
|
assert_raises(ValueError, make_array, 4, 4, -2)
|
|
assert_raises(ValueError, make_array, 4, 2, -1)
|
|
assert_raises(ValueError, make_array, 8, 3, 1)
|
|
assert_equal(make_array(8, 3, 0), np.array([3]*8))
|
|
# Check behavior reported in gh-2503:
|
|
assert_raises(ValueError, make_array, (2, 3), 5, np.array([-2, -3]))
|
|
make_array(0, 0, 10)
|
|
|
|
def test_set_stridesattr(self):
|
|
x = self.one
|
|
|
|
def make_array(size, offset, strides):
|
|
try:
|
|
r = np.ndarray([size], dtype=int, buffer=x,
|
|
offset=offset*x.itemsize)
|
|
except Exception as e:
|
|
raise RuntimeError(e)
|
|
r.strides = strides = strides*x.itemsize
|
|
return r
|
|
|
|
assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1]))
|
|
assert_equal(make_array(7, 3, 1), np.array([3, 4, 5, 6, 7, 8, 9]))
|
|
assert_raises(ValueError, make_array, 4, 4, -2)
|
|
assert_raises(ValueError, make_array, 4, 2, -1)
|
|
assert_raises(RuntimeError, make_array, 8, 3, 1)
|
|
# Check that the true extent of the array is used.
|
|
# Test relies on as_strided base not exposing a buffer.
|
|
x = np.lib.stride_tricks.as_strided(np.arange(1), (10, 10), (0, 0))
|
|
|
|
def set_strides(arr, strides):
|
|
arr.strides = strides
|
|
|
|
assert_raises(ValueError, set_strides, x, (10*x.itemsize, x.itemsize))
|
|
|
|
# Test for offset calculations:
|
|
x = np.lib.stride_tricks.as_strided(np.arange(10, dtype=np.int8)[-1],
|
|
shape=(10,), strides=(-1,))
|
|
assert_raises(ValueError, set_strides, x[::-1], -1)
|
|
a = x[::-1]
|
|
a.strides = 1
|
|
a[::2].strides = 2
|
|
|
|
# test 0d
|
|
arr_0d = np.array(0)
|
|
arr_0d.strides = ()
|
|
assert_raises(TypeError, set_strides, arr_0d, None)
|
|
|
|
def test_fill(self):
|
|
for t in "?bhilqpBHILQPfdgFDGO":
|
|
x = np.empty((3, 2, 1), t)
|
|
y = np.empty((3, 2, 1), t)
|
|
x.fill(1)
|
|
y[...] = 1
|
|
assert_equal(x, y)
|
|
|
|
def test_fill_max_uint64(self):
|
|
x = np.empty((3, 2, 1), dtype=np.uint64)
|
|
y = np.empty((3, 2, 1), dtype=np.uint64)
|
|
value = 2**64 - 1
|
|
y[...] = value
|
|
x.fill(value)
|
|
assert_array_equal(x, y)
|
|
|
|
def test_fill_struct_array(self):
|
|
# Filling from a scalar
|
|
x = np.array([(0, 0.0), (1, 1.0)], dtype='i4,f8')
|
|
x.fill(x[0])
|
|
assert_equal(x['f1'][1], x['f1'][0])
|
|
# Filling from a tuple that can be converted
|
|
# to a scalar
|
|
x = np.zeros(2, dtype=[('a', 'f8'), ('b', 'i4')])
|
|
x.fill((3.5, -2))
|
|
assert_array_equal(x['a'], [3.5, 3.5])
|
|
assert_array_equal(x['b'], [-2, -2])
|
|
|
|
|
|
class TestArrayConstruction:
|
|
def test_array(self):
|
|
d = np.ones(6)
|
|
r = np.array([d, d])
|
|
assert_equal(r, np.ones((2, 6)))
|
|
|
|
d = np.ones(6)
|
|
tgt = np.ones((2, 6))
|
|
r = np.array([d, d])
|
|
assert_equal(r, tgt)
|
|
tgt[1] = 2
|
|
r = np.array([d, d + 1])
|
|
assert_equal(r, tgt)
|
|
|
|
d = np.ones(6)
|
|
r = np.array([[d, d]])
|
|
assert_equal(r, np.ones((1, 2, 6)))
|
|
|
|
d = np.ones(6)
|
|
r = np.array([[d, d], [d, d]])
|
|
assert_equal(r, np.ones((2, 2, 6)))
|
|
|
|
d = np.ones((6, 6))
|
|
r = np.array([d, d])
|
|
assert_equal(r, np.ones((2, 6, 6)))
|
|
|
|
d = np.ones((6, ))
|
|
r = np.array([[d, d + 1], d + 2], dtype=object)
|
|
assert_equal(len(r), 2)
|
|
assert_equal(r[0], [d, d + 1])
|
|
assert_equal(r[1], d + 2)
|
|
|
|
tgt = np.ones((2, 3), dtype=bool)
|
|
tgt[0, 2] = False
|
|
tgt[1, 0:2] = False
|
|
r = np.array([[True, True, False], [False, False, True]])
|
|
assert_equal(r, tgt)
|
|
r = np.array([[True, False], [True, False], [False, True]])
|
|
assert_equal(r, tgt.T)
|
|
|
|
def test_array_empty(self):
|
|
assert_raises(TypeError, np.array)
|
|
|
|
def test_array_copy_false(self):
|
|
d = np.array([1, 2, 3])
|
|
e = np.array(d, copy=False)
|
|
d[1] = 3
|
|
assert_array_equal(e, [1, 3, 3])
|
|
e = np.array(d, copy=False, order='F')
|
|
d[1] = 4
|
|
assert_array_equal(e, [1, 4, 3])
|
|
e[2] = 7
|
|
assert_array_equal(d, [1, 4, 7])
|
|
|
|
def test_array_copy_true(self):
|
|
d = np.array([[1,2,3], [1, 2, 3]])
|
|
e = np.array(d, copy=True)
|
|
d[0, 1] = 3
|
|
e[0, 2] = -7
|
|
assert_array_equal(e, [[1, 2, -7], [1, 2, 3]])
|
|
assert_array_equal(d, [[1, 3, 3], [1, 2, 3]])
|
|
e = np.array(d, copy=True, order='F')
|
|
d[0, 1] = 5
|
|
e[0, 2] = 7
|
|
assert_array_equal(e, [[1, 3, 7], [1, 2, 3]])
|
|
assert_array_equal(d, [[1, 5, 3], [1,2,3]])
|
|
|
|
def test_array_cont(self):
|
|
d = np.ones(10)[::2]
|
|
assert_(np.ascontiguousarray(d).flags.c_contiguous)
|
|
assert_(np.ascontiguousarray(d).flags.f_contiguous)
|
|
assert_(np.asfortranarray(d).flags.c_contiguous)
|
|
assert_(np.asfortranarray(d).flags.f_contiguous)
|
|
d = np.ones((10, 10))[::2,::2]
|
|
assert_(np.ascontiguousarray(d).flags.c_contiguous)
|
|
assert_(np.asfortranarray(d).flags.f_contiguous)
|
|
|
|
|
|
class TestAssignment:
|
|
def test_assignment_broadcasting(self):
|
|
a = np.arange(6).reshape(2, 3)
|
|
|
|
# Broadcasting the input to the output
|
|
a[...] = np.arange(3)
|
|
assert_equal(a, [[0, 1, 2], [0, 1, 2]])
|
|
a[...] = np.arange(2).reshape(2, 1)
|
|
assert_equal(a, [[0, 0, 0], [1, 1, 1]])
|
|
|
|
# For compatibility with <= 1.5, a limited version of broadcasting
|
|
# the output to the input.
|
|
#
|
|
# This behavior is inconsistent with NumPy broadcasting
|
|
# in general, because it only uses one of the two broadcasting
|
|
# rules (adding a new "1" dimension to the left of the shape),
|
|
# applied to the output instead of an input. In NumPy 2.0, this kind
|
|
# of broadcasting assignment will likely be disallowed.
|
|
a[...] = np.arange(6)[::-1].reshape(1, 2, 3)
|
|
assert_equal(a, [[5, 4, 3], [2, 1, 0]])
|
|
# The other type of broadcasting would require a reduction operation.
|
|
|
|
def assign(a, b):
|
|
a[...] = b
|
|
|
|
assert_raises(ValueError, assign, a, np.arange(12).reshape(2, 2, 3))
|
|
|
|
def test_assignment_errors(self):
|
|
# Address issue #2276
|
|
class C:
|
|
pass
|
|
a = np.zeros(1)
|
|
|
|
def assign(v):
|
|
a[0] = v
|
|
|
|
assert_raises((AttributeError, TypeError), assign, C())
|
|
assert_raises(ValueError, assign, [1])
|
|
|
|
def test_unicode_assignment(self):
|
|
# gh-5049
|
|
from numpy.core.numeric import set_string_function
|
|
|
|
@contextmanager
|
|
def inject_str(s):
|
|
""" replace ndarray.__str__ temporarily """
|
|
set_string_function(lambda x: s, repr=False)
|
|
try:
|
|
yield
|
|
finally:
|
|
set_string_function(None, repr=False)
|
|
|
|
a1d = np.array([u'test'])
|
|
a0d = np.array(u'done')
|
|
with inject_str(u'bad'):
|
|
a1d[0] = a0d # previously this would invoke __str__
|
|
assert_equal(a1d[0], u'done')
|
|
|
|
# this would crash for the same reason
|
|
np.array([np.array(u'\xe5\xe4\xf6')])
|
|
|
|
def test_stringlike_empty_list(self):
|
|
# gh-8902
|
|
u = np.array([u'done'])
|
|
b = np.array([b'done'])
|
|
|
|
class bad_sequence:
|
|
def __getitem__(self): pass
|
|
def __len__(self): raise RuntimeError
|
|
|
|
assert_raises(ValueError, operator.setitem, u, 0, [])
|
|
assert_raises(ValueError, operator.setitem, b, 0, [])
|
|
|
|
assert_raises(ValueError, operator.setitem, u, 0, bad_sequence())
|
|
assert_raises(ValueError, operator.setitem, b, 0, bad_sequence())
|
|
|
|
def test_longdouble_assignment(self):
|
|
# only relevant if longdouble is larger than float
|
|
# we're looking for loss of precision
|
|
|
|
for dtype in (np.longdouble, np.longcomplex):
|
|
# gh-8902
|
|
tinyb = np.nextafter(np.longdouble(0), 1).astype(dtype)
|
|
tinya = np.nextafter(np.longdouble(0), -1).astype(dtype)
|
|
|
|
# construction
|
|
tiny1d = np.array([tinya])
|
|
assert_equal(tiny1d[0], tinya)
|
|
|
|
# scalar = scalar
|
|
tiny1d[0] = tinyb
|
|
assert_equal(tiny1d[0], tinyb)
|
|
|
|
# 0d = scalar
|
|
tiny1d[0, ...] = tinya
|
|
assert_equal(tiny1d[0], tinya)
|
|
|
|
# 0d = 0d
|
|
tiny1d[0, ...] = tinyb[...]
|
|
assert_equal(tiny1d[0], tinyb)
|
|
|
|
# scalar = 0d
|
|
tiny1d[0] = tinyb[...]
|
|
assert_equal(tiny1d[0], tinyb)
|
|
|
|
arr = np.array([np.array(tinya)])
|
|
assert_equal(arr[0], tinya)
|
|
|
|
def test_cast_to_string(self):
|
|
# cast to str should do "str(scalar)", not "str(scalar.item())"
|
|
# Example: In python2, str(float) is truncated, so we want to avoid
|
|
# str(np.float64(...).item()) as this would incorrectly truncate.
|
|
a = np.zeros(1, dtype='S20')
|
|
a[:] = np.array(['1.12345678901234567890'], dtype='f8')
|
|
assert_equal(a[0], b"1.1234567890123457")
|
|
|
|
|
|
class TestDtypedescr:
|
|
def test_construction(self):
|
|
d1 = np.dtype('i4')
|
|
assert_equal(d1, np.dtype(np.int32))
|
|
d2 = np.dtype('f8')
|
|
assert_equal(d2, np.dtype(np.float64))
|
|
|
|
def test_byteorders(self):
|
|
assert_(np.dtype('<i4') != np.dtype('>i4'))
|
|
assert_(np.dtype([('a', '<i4')]) != np.dtype([('a', '>i4')]))
|
|
|
|
def test_structured_non_void(self):
|
|
fields = [('a', '<i2'), ('b', '<i2')]
|
|
dt_int = np.dtype(('i4', fields))
|
|
assert_equal(str(dt_int), "(numpy.int32, [('a', '<i2'), ('b', '<i2')])")
|
|
|
|
# gh-9821
|
|
arr_int = np.zeros(4, dt_int)
|
|
assert_equal(repr(arr_int),
|
|
"array([0, 0, 0, 0], dtype=(numpy.int32, [('a', '<i2'), ('b', '<i2')]))")
|
|
|
|
|
|
class TestZeroRank:
|
|
def setup(self):
|
|
self.d = np.array(0), np.array('x', object)
|
|
|
|
def test_ellipsis_subscript(self):
|
|
a, b = self.d
|
|
assert_equal(a[...], 0)
|
|
assert_equal(b[...], 'x')
|
|
assert_(a[...].base is a) # `a[...] is a` in numpy <1.9.
|
|
assert_(b[...].base is b) # `b[...] is b` in numpy <1.9.
|
|
|
|
def test_empty_subscript(self):
|
|
a, b = self.d
|
|
assert_equal(a[()], 0)
|
|
assert_equal(b[()], 'x')
|
|
assert_(type(a[()]) is a.dtype.type)
|
|
assert_(type(b[()]) is str)
|
|
|
|
def test_invalid_subscript(self):
|
|
a, b = self.d
|
|
assert_raises(IndexError, lambda x: x[0], a)
|
|
assert_raises(IndexError, lambda x: x[0], b)
|
|
assert_raises(IndexError, lambda x: x[np.array([], int)], a)
|
|
assert_raises(IndexError, lambda x: x[np.array([], int)], b)
|
|
|
|
def test_ellipsis_subscript_assignment(self):
|
|
a, b = self.d
|
|
a[...] = 42
|
|
assert_equal(a, 42)
|
|
b[...] = ''
|
|
assert_equal(b.item(), '')
|
|
|
|
def test_empty_subscript_assignment(self):
|
|
a, b = self.d
|
|
a[()] = 42
|
|
assert_equal(a, 42)
|
|
b[()] = ''
|
|
assert_equal(b.item(), '')
|
|
|
|
def test_invalid_subscript_assignment(self):
|
|
a, b = self.d
|
|
|
|
def assign(x, i, v):
|
|
x[i] = v
|
|
|
|
assert_raises(IndexError, assign, a, 0, 42)
|
|
assert_raises(IndexError, assign, b, 0, '')
|
|
assert_raises(ValueError, assign, a, (), '')
|
|
|
|
def test_newaxis(self):
|
|
a, b = self.d
|
|
assert_equal(a[np.newaxis].shape, (1,))
|
|
assert_equal(a[..., np.newaxis].shape, (1,))
|
|
assert_equal(a[np.newaxis, ...].shape, (1,))
|
|
assert_equal(a[..., np.newaxis].shape, (1,))
|
|
assert_equal(a[np.newaxis, ..., np.newaxis].shape, (1, 1))
|
|
assert_equal(a[..., np.newaxis, np.newaxis].shape, (1, 1))
|
|
assert_equal(a[np.newaxis, np.newaxis, ...].shape, (1, 1))
|
|
assert_equal(a[(np.newaxis,)*10].shape, (1,)*10)
|
|
|
|
def test_invalid_newaxis(self):
|
|
a, b = self.d
|
|
|
|
def subscript(x, i):
|
|
x[i]
|
|
|
|
assert_raises(IndexError, subscript, a, (np.newaxis, 0))
|
|
assert_raises(IndexError, subscript, a, (np.newaxis,)*50)
|
|
|
|
def test_constructor(self):
|
|
x = np.ndarray(())
|
|
x[()] = 5
|
|
assert_equal(x[()], 5)
|
|
y = np.ndarray((), buffer=x)
|
|
y[()] = 6
|
|
assert_equal(x[()], 6)
|
|
|
|
# strides and shape must be the same length
|
|
with pytest.raises(ValueError):
|
|
np.ndarray((2,), strides=())
|
|
with pytest.raises(ValueError):
|
|
np.ndarray((), strides=(2,))
|
|
|
|
def test_output(self):
|
|
x = np.array(2)
|
|
assert_raises(ValueError, np.add, x, [1], x)
|
|
|
|
def test_real_imag(self):
|
|
# contiguity checks are for gh-11245
|
|
x = np.array(1j)
|
|
xr = x.real
|
|
xi = x.imag
|
|
|
|
assert_equal(xr, np.array(0))
|
|
assert_(type(xr) is np.ndarray)
|
|
assert_equal(xr.flags.contiguous, True)
|
|
assert_equal(xr.flags.f_contiguous, True)
|
|
|
|
assert_equal(xi, np.array(1))
|
|
assert_(type(xi) is np.ndarray)
|
|
assert_equal(xi.flags.contiguous, True)
|
|
assert_equal(xi.flags.f_contiguous, True)
|
|
|
|
|
|
class TestScalarIndexing:
|
|
def setup(self):
|
|
self.d = np.array([0, 1])[0]
|
|
|
|
def test_ellipsis_subscript(self):
|
|
a = self.d
|
|
assert_equal(a[...], 0)
|
|
assert_equal(a[...].shape, ())
|
|
|
|
def test_empty_subscript(self):
|
|
a = self.d
|
|
assert_equal(a[()], 0)
|
|
assert_equal(a[()].shape, ())
|
|
|
|
def test_invalid_subscript(self):
|
|
a = self.d
|
|
assert_raises(IndexError, lambda x: x[0], a)
|
|
assert_raises(IndexError, lambda x: x[np.array([], int)], a)
|
|
|
|
def test_invalid_subscript_assignment(self):
|
|
a = self.d
|
|
|
|
def assign(x, i, v):
|
|
x[i] = v
|
|
|
|
assert_raises(TypeError, assign, a, 0, 42)
|
|
|
|
def test_newaxis(self):
|
|
a = self.d
|
|
assert_equal(a[np.newaxis].shape, (1,))
|
|
assert_equal(a[..., np.newaxis].shape, (1,))
|
|
assert_equal(a[np.newaxis, ...].shape, (1,))
|
|
assert_equal(a[..., np.newaxis].shape, (1,))
|
|
assert_equal(a[np.newaxis, ..., np.newaxis].shape, (1, 1))
|
|
assert_equal(a[..., np.newaxis, np.newaxis].shape, (1, 1))
|
|
assert_equal(a[np.newaxis, np.newaxis, ...].shape, (1, 1))
|
|
assert_equal(a[(np.newaxis,)*10].shape, (1,)*10)
|
|
|
|
def test_invalid_newaxis(self):
|
|
a = self.d
|
|
|
|
def subscript(x, i):
|
|
x[i]
|
|
|
|
assert_raises(IndexError, subscript, a, (np.newaxis, 0))
|
|
assert_raises(IndexError, subscript, a, (np.newaxis,)*50)
|
|
|
|
def test_overlapping_assignment(self):
|
|
# With positive strides
|
|
a = np.arange(4)
|
|
a[:-1] = a[1:]
|
|
assert_equal(a, [1, 2, 3, 3])
|
|
|
|
a = np.arange(4)
|
|
a[1:] = a[:-1]
|
|
assert_equal(a, [0, 0, 1, 2])
|
|
|
|
# With positive and negative strides
|
|
a = np.arange(4)
|
|
a[:] = a[::-1]
|
|
assert_equal(a, [3, 2, 1, 0])
|
|
|
|
a = np.arange(6).reshape(2, 3)
|
|
a[::-1,:] = a[:, ::-1]
|
|
assert_equal(a, [[5, 4, 3], [2, 1, 0]])
|
|
|
|
a = np.arange(6).reshape(2, 3)
|
|
a[::-1, ::-1] = a[:, ::-1]
|
|
assert_equal(a, [[3, 4, 5], [0, 1, 2]])
|
|
|
|
# With just one element overlapping
|
|
a = np.arange(5)
|
|
a[:3] = a[2:]
|
|
assert_equal(a, [2, 3, 4, 3, 4])
|
|
|
|
a = np.arange(5)
|
|
a[2:] = a[:3]
|
|
assert_equal(a, [0, 1, 0, 1, 2])
|
|
|
|
a = np.arange(5)
|
|
a[2::-1] = a[2:]
|
|
assert_equal(a, [4, 3, 2, 3, 4])
|
|
|
|
a = np.arange(5)
|
|
a[2:] = a[2::-1]
|
|
assert_equal(a, [0, 1, 2, 1, 0])
|
|
|
|
a = np.arange(5)
|
|
a[2::-1] = a[:1:-1]
|
|
assert_equal(a, [2, 3, 4, 3, 4])
|
|
|
|
a = np.arange(5)
|
|
a[:1:-1] = a[2::-1]
|
|
assert_equal(a, [0, 1, 0, 1, 2])
|
|
|
|
|
|
class TestCreation:
|
|
"""
|
|
Test the np.array constructor
|
|
"""
|
|
def test_from_attribute(self):
|
|
class x:
|
|
def __array__(self, dtype=None):
|
|
pass
|
|
|
|
assert_raises(ValueError, np.array, x())
|
|
|
|
def test_from_string(self):
|
|
types = np.typecodes['AllInteger'] + np.typecodes['Float']
|
|
nstr = ['123', '123']
|
|
result = np.array([123, 123], dtype=int)
|
|
for type in types:
|
|
msg = 'String conversion for %s' % type
|
|
assert_equal(np.array(nstr, dtype=type), result, err_msg=msg)
|
|
|
|
def test_void(self):
|
|
arr = np.array([], dtype='V')
|
|
assert_equal(arr.dtype.kind, 'V')
|
|
|
|
def test_too_big_error(self):
|
|
# 45341 is the smallest integer greater than sqrt(2**31 - 1).
|
|
# 3037000500 is the smallest integer greater than sqrt(2**63 - 1).
|
|
# We want to make sure that the square byte array with those dimensions
|
|
# is too big on 32 or 64 bit systems respectively.
|
|
if np.iinfo('intp').max == 2**31 - 1:
|
|
shape = (46341, 46341)
|
|
elif np.iinfo('intp').max == 2**63 - 1:
|
|
shape = (3037000500, 3037000500)
|
|
else:
|
|
return
|
|
assert_raises(ValueError, np.empty, shape, dtype=np.int8)
|
|
assert_raises(ValueError, np.zeros, shape, dtype=np.int8)
|
|
assert_raises(ValueError, np.ones, shape, dtype=np.int8)
|
|
|
|
@pytest.mark.skipif(np.dtype(np.intp).itemsize != 8,
|
|
reason="malloc may not fail on 32 bit systems")
|
|
def test_malloc_fails(self):
|
|
# This test is guaranteed to fail due to a too large allocation
|
|
with assert_raises(np.core._exceptions._ArrayMemoryError):
|
|
np.empty(np.iinfo(np.intp).max, dtype=np.uint8)
|
|
|
|
def test_zeros(self):
|
|
types = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
|
|
for dt in types:
|
|
d = np.zeros((13,), dtype=dt)
|
|
assert_equal(np.count_nonzero(d), 0)
|
|
# true for ieee floats
|
|
assert_equal(d.sum(), 0)
|
|
assert_(not d.any())
|
|
|
|
d = np.zeros(2, dtype='(2,4)i4')
|
|
assert_equal(np.count_nonzero(d), 0)
|
|
assert_equal(d.sum(), 0)
|
|
assert_(not d.any())
|
|
|
|
d = np.zeros(2, dtype='4i4')
|
|
assert_equal(np.count_nonzero(d), 0)
|
|
assert_equal(d.sum(), 0)
|
|
assert_(not d.any())
|
|
|
|
d = np.zeros(2, dtype='(2,4)i4, (2,4)i4')
|
|
assert_equal(np.count_nonzero(d), 0)
|
|
|
|
@pytest.mark.slow
|
|
def test_zeros_big(self):
|
|
# test big array as they might be allocated different by the system
|
|
types = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
|
|
for dt in types:
|
|
d = np.zeros((30 * 1024**2,), dtype=dt)
|
|
assert_(not d.any())
|
|
# This test can fail on 32-bit systems due to insufficient
|
|
# contiguous memory. Deallocating the previous array increases the
|
|
# chance of success.
|
|
del(d)
|
|
|
|
def test_zeros_obj(self):
|
|
# test initialization from PyLong(0)
|
|
d = np.zeros((13,), dtype=object)
|
|
assert_array_equal(d, [0] * 13)
|
|
assert_equal(np.count_nonzero(d), 0)
|
|
|
|
def test_zeros_obj_obj(self):
|
|
d = np.zeros(10, dtype=[('k', object, 2)])
|
|
assert_array_equal(d['k'], 0)
|
|
|
|
def test_zeros_like_like_zeros(self):
|
|
# test zeros_like returns the same as zeros
|
|
for c in np.typecodes['All']:
|
|
if c == 'V':
|
|
continue
|
|
d = np.zeros((3,3), dtype=c)
|
|
assert_array_equal(np.zeros_like(d), d)
|
|
assert_equal(np.zeros_like(d).dtype, d.dtype)
|
|
# explicitly check some special cases
|
|
d = np.zeros((3,3), dtype='S5')
|
|
assert_array_equal(np.zeros_like(d), d)
|
|
assert_equal(np.zeros_like(d).dtype, d.dtype)
|
|
d = np.zeros((3,3), dtype='U5')
|
|
assert_array_equal(np.zeros_like(d), d)
|
|
assert_equal(np.zeros_like(d).dtype, d.dtype)
|
|
|
|
d = np.zeros((3,3), dtype='<i4')
|
|
assert_array_equal(np.zeros_like(d), d)
|
|
assert_equal(np.zeros_like(d).dtype, d.dtype)
|
|
d = np.zeros((3,3), dtype='>i4')
|
|
assert_array_equal(np.zeros_like(d), d)
|
|
assert_equal(np.zeros_like(d).dtype, d.dtype)
|
|
|
|
d = np.zeros((3,3), dtype='<M8[s]')
|
|
assert_array_equal(np.zeros_like(d), d)
|
|
assert_equal(np.zeros_like(d).dtype, d.dtype)
|
|
d = np.zeros((3,3), dtype='>M8[s]')
|
|
assert_array_equal(np.zeros_like(d), d)
|
|
assert_equal(np.zeros_like(d).dtype, d.dtype)
|
|
|
|
d = np.zeros((3,3), dtype='f4,f4')
|
|
assert_array_equal(np.zeros_like(d), d)
|
|
assert_equal(np.zeros_like(d).dtype, d.dtype)
|
|
|
|
def test_empty_unicode(self):
|
|
# don't throw decode errors on garbage memory
|
|
for i in range(5, 100, 5):
|
|
d = np.empty(i, dtype='U')
|
|
str(d)
|
|
|
|
def test_sequence_non_homogenous(self):
|
|
assert_equal(np.array([4, 2**80]).dtype, object)
|
|
assert_equal(np.array([4, 2**80, 4]).dtype, object)
|
|
assert_equal(np.array([2**80, 4]).dtype, object)
|
|
assert_equal(np.array([2**80] * 3).dtype, object)
|
|
assert_equal(np.array([[1, 1],[1j, 1j]]).dtype, complex)
|
|
assert_equal(np.array([[1j, 1j],[1, 1]]).dtype, complex)
|
|
assert_equal(np.array([[1, 1, 1],[1, 1j, 1.], [1, 1, 1]]).dtype, complex)
|
|
|
|
def test_non_sequence_sequence(self):
|
|
"""Should not segfault.
|
|
|
|
Class Fail breaks the sequence protocol for new style classes, i.e.,
|
|
those derived from object. Class Map is a mapping type indicated by
|
|
raising a ValueError. At some point we may raise a warning instead
|
|
of an error in the Fail case.
|
|
|
|
"""
|
|
class Fail:
|
|
def __len__(self):
|
|
return 1
|
|
|
|
def __getitem__(self, index):
|
|
raise ValueError()
|
|
|
|
class Map:
|
|
def __len__(self):
|
|
return 1
|
|
|
|
def __getitem__(self, index):
|
|
raise KeyError()
|
|
|
|
a = np.array([Map()])
|
|
assert_(a.shape == (1,))
|
|
assert_(a.dtype == np.dtype(object))
|
|
assert_raises(ValueError, np.array, [Fail()])
|
|
|
|
def test_no_len_object_type(self):
|
|
# gh-5100, want object array from iterable object without len()
|
|
class Point2:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __getitem__(self, ind):
|
|
if ind in [0, 1]:
|
|
return ind
|
|
else:
|
|
raise IndexError()
|
|
d = np.array([Point2(), Point2(), Point2()])
|
|
assert_equal(d.dtype, np.dtype(object))
|
|
|
|
def test_false_len_sequence(self):
|
|
# gh-7264, segfault for this example
|
|
class C:
|
|
def __getitem__(self, i):
|
|
raise IndexError
|
|
def __len__(self):
|
|
return 42
|
|
|
|
a = np.array(C()) # segfault?
|
|
assert_equal(len(a), 0)
|
|
|
|
def test_false_len_iterable(self):
|
|
# Special case where a bad __getitem__ makes us fall back on __iter__:
|
|
class C:
|
|
def __getitem__(self, x):
|
|
raise Exception
|
|
def __iter__(self):
|
|
return iter(())
|
|
def __len__(self):
|
|
return 2
|
|
|
|
a = np.empty(2)
|
|
with assert_raises(ValueError):
|
|
a[:] = C() # Segfault!
|
|
|
|
def test_failed_len_sequence(self):
|
|
# gh-7393
|
|
class A:
|
|
def __init__(self, data):
|
|
self._data = data
|
|
def __getitem__(self, item):
|
|
return type(self)(self._data[item])
|
|
def __len__(self):
|
|
return len(self._data)
|
|
|
|
# len(d) should give 3, but len(d[0]) will fail
|
|
d = A([1,2,3])
|
|
assert_equal(len(np.array(d)), 3)
|
|
|
|
def test_array_too_big(self):
|
|
# Test that array creation succeeds for arrays addressable by intp
|
|
# on the byte level and fails for too large arrays.
|
|
buf = np.zeros(100)
|
|
|
|
max_bytes = np.iinfo(np.intp).max
|
|
for dtype in ["intp", "S20", "b"]:
|
|
dtype = np.dtype(dtype)
|
|
itemsize = dtype.itemsize
|
|
|
|
np.ndarray(buffer=buf, strides=(0,),
|
|
shape=(max_bytes//itemsize,), dtype=dtype)
|
|
assert_raises(ValueError, np.ndarray, buffer=buf, strides=(0,),
|
|
shape=(max_bytes//itemsize + 1,), dtype=dtype)
|
|
|
|
def _ragged_creation(self, seq):
|
|
# without dtype=object, the ragged object should raise
|
|
with assert_warns(np.VisibleDeprecationWarning):
|
|
a = np.array(seq)
|
|
b = np.array(seq, dtype=object)
|
|
assert_equal(a, b)
|
|
return b
|
|
|
|
def test_ragged_ndim_object(self):
|
|
# Lists of mismatching depths are treated as object arrays
|
|
a = self._ragged_creation([[1], 2, 3])
|
|
assert_equal(a.shape, (3,))
|
|
assert_equal(a.dtype, object)
|
|
|
|
a = self._ragged_creation([1, [2], 3])
|
|
assert_equal(a.shape, (3,))
|
|
assert_equal(a.dtype, object)
|
|
|
|
a = self._ragged_creation([1, 2, [3]])
|
|
assert_equal(a.shape, (3,))
|
|
assert_equal(a.dtype, object)
|
|
|
|
def test_ragged_shape_object(self):
|
|
# The ragged dimension of a list is turned into an object array
|
|
a = self._ragged_creation([[1, 1], [2], [3]])
|
|
assert_equal(a.shape, (3,))
|
|
assert_equal(a.dtype, object)
|
|
|
|
a = self._ragged_creation([[1], [2, 2], [3]])
|
|
assert_equal(a.shape, (3,))
|
|
assert_equal(a.dtype, object)
|
|
|
|
a = self._ragged_creation([[1], [2], [3, 3]])
|
|
assert a.shape == (3,)
|
|
assert a.dtype == object
|
|
|
|
def test_array_of_ragged_array(self):
|
|
outer = np.array([None, None])
|
|
outer[0] = outer[1] = np.array([1, 2, 3])
|
|
assert np.array(outer).shape == (2,)
|
|
assert np.array([outer]).shape == (1, 2)
|
|
|
|
outer_ragged = np.array([None, None])
|
|
outer_ragged[0] = np.array([1, 2, 3])
|
|
outer_ragged[1] = np.array([1, 2, 3, 4])
|
|
# should both of these emit deprecation warnings?
|
|
assert np.array(outer_ragged).shape == (2,)
|
|
assert np.array([outer_ragged]).shape == (1, 2,)
|
|
|
|
def test_deep_nonragged_object(self):
|
|
# None of these should raise, even though they are missing dtype=object
|
|
a = np.array([[[Decimal(1)]]])
|
|
a = np.array([1, Decimal(1)])
|
|
a = np.array([[1], [Decimal(1)]])
|
|
|
|
class TestStructured:
|
|
def test_subarray_field_access(self):
|
|
a = np.zeros((3, 5), dtype=[('a', ('i4', (2, 2)))])
|
|
a['a'] = np.arange(60).reshape(3, 5, 2, 2)
|
|
|
|
# Since the subarray is always in C-order, a transpose
|
|
# does not swap the subarray:
|
|
assert_array_equal(a.T['a'], a['a'].transpose(1, 0, 2, 3))
|
|
|
|
# In Fortran order, the subarray gets appended
|
|
# like in all other cases, not prepended as a special case
|
|
b = a.copy(order='F')
|
|
assert_equal(a['a'].shape, b['a'].shape)
|
|
assert_equal(a.T['a'].shape, a.T.copy()['a'].shape)
|
|
|
|
def test_subarray_comparison(self):
|
|
# Check that comparisons between record arrays with
|
|
# multi-dimensional field types work properly
|
|
a = np.rec.fromrecords(
|
|
[([1, 2, 3], 'a', [[1, 2], [3, 4]]), ([3, 3, 3], 'b', [[0, 0], [0, 0]])],
|
|
dtype=[('a', ('f4', 3)), ('b', object), ('c', ('i4', (2, 2)))])
|
|
b = a.copy()
|
|
assert_equal(a == b, [True, True])
|
|
assert_equal(a != b, [False, False])
|
|
b[1].b = 'c'
|
|
assert_equal(a == b, [True, False])
|
|
assert_equal(a != b, [False, True])
|
|
for i in range(3):
|
|
b[0].a = a[0].a
|
|
b[0].a[i] = 5
|
|
assert_equal(a == b, [False, False])
|
|
assert_equal(a != b, [True, True])
|
|
for i in range(2):
|
|
for j in range(2):
|
|
b = a.copy()
|
|
b[0].c[i, j] = 10
|
|
assert_equal(a == b, [False, True])
|
|
assert_equal(a != b, [True, False])
|
|
|
|
# Check that broadcasting with a subarray works
|
|
a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8')])
|
|
b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8')])
|
|
assert_equal(a == b, [[True, True, False], [False, False, True]])
|
|
assert_equal(b == a, [[True, True, False], [False, False, True]])
|
|
a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8', (1,))])
|
|
b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8', (1,))])
|
|
assert_equal(a == b, [[True, True, False], [False, False, True]])
|
|
assert_equal(b == a, [[True, True, False], [False, False, True]])
|
|
a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))])
|
|
b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))])
|
|
assert_equal(a == b, [[True, False, False], [False, False, True]])
|
|
assert_equal(b == a, [[True, False, False], [False, False, True]])
|
|
|
|
# Check that broadcasting Fortran-style arrays with a subarray work
|
|
a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))], order='F')
|
|
b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))])
|
|
assert_equal(a == b, [[True, False, False], [False, False, True]])
|
|
assert_equal(b == a, [[True, False, False], [False, False, True]])
|
|
|
|
# Check that incompatible sub-array shapes don't result to broadcasting
|
|
x = np.zeros((1,), dtype=[('a', ('f4', (1, 2))), ('b', 'i1')])
|
|
y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')])
|
|
# This comparison invokes deprecated behaviour, and will probably
|
|
# start raising an error eventually. What we really care about in this
|
|
# test is just that it doesn't return True.
|
|
with suppress_warnings() as sup:
|
|
sup.filter(FutureWarning, "elementwise == comparison failed")
|
|
assert_equal(x == y, False)
|
|
|
|
x = np.zeros((1,), dtype=[('a', ('f4', (2, 1))), ('b', 'i1')])
|
|
y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')])
|
|
# This comparison invokes deprecated behaviour, and will probably
|
|
# start raising an error eventually. What we really care about in this
|
|
# test is just that it doesn't return True.
|
|
with suppress_warnings() as sup:
|
|
sup.filter(FutureWarning, "elementwise == comparison failed")
|
|
assert_equal(x == y, False)
|
|
|
|
# Check that structured arrays that are different only in
|
|
# byte-order work
|
|
a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i8'), ('b', '<f8')])
|
|
b = np.array([(5, 43), (10, 1)], dtype=[('a', '<i8'), ('b', '>f8')])
|
|
assert_equal(a == b, [False, True])
|
|
|
|
def test_casting(self):
|
|
# Check that casting a structured array to change its byte order
|
|
# works
|
|
a = np.array([(1,)], dtype=[('a', '<i4')])
|
|
assert_(np.can_cast(a.dtype, [('a', '>i4')], casting='unsafe'))
|
|
b = a.astype([('a', '>i4')])
|
|
assert_equal(b, a.byteswap().newbyteorder())
|
|
assert_equal(a['a'][0], b['a'][0])
|
|
|
|
# Check that equality comparison works on structured arrays if
|
|
# they are 'equiv'-castable
|
|
a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i4'), ('b', '<f8')])
|
|
b = np.array([(5, 42), (10, 1)], dtype=[('a', '<i4'), ('b', '>f8')])
|
|
assert_(np.can_cast(a.dtype, b.dtype, casting='equiv'))
|
|
assert_equal(a == b, [True, True])
|
|
|
|
# Check that 'equiv' casting can change byte order
|
|
assert_(np.can_cast(a.dtype, b.dtype, casting='equiv'))
|
|
c = a.astype(b.dtype, casting='equiv')
|
|
assert_equal(a == c, [True, True])
|
|
|
|
# Check that 'safe' casting can change byte order and up-cast
|
|
# fields
|
|
t = [('a', '<i8'), ('b', '>f8')]
|
|
assert_(np.can_cast(a.dtype, t, casting='safe'))
|
|
c = a.astype(t, casting='safe')
|
|
assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)),
|
|
[True, True])
|
|
|
|
# Check that 'same_kind' casting can change byte order and
|
|
# change field widths within a "kind"
|
|
t = [('a', '<i4'), ('b', '>f4')]
|
|
assert_(np.can_cast(a.dtype, t, casting='same_kind'))
|
|
c = a.astype(t, casting='same_kind')
|
|
assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)),
|
|
[True, True])
|
|
|
|
# Check that casting fails if the casting rule should fail on
|
|
# any of the fields
|
|
t = [('a', '>i8'), ('b', '<f4')]
|
|
assert_(not np.can_cast(a.dtype, t, casting='safe'))
|
|
assert_raises(TypeError, a.astype, t, casting='safe')
|
|
t = [('a', '>i2'), ('b', '<f8')]
|
|
assert_(not np.can_cast(a.dtype, t, casting='equiv'))
|
|
assert_raises(TypeError, a.astype, t, casting='equiv')
|
|
t = [('a', '>i8'), ('b', '<i2')]
|
|
assert_(not np.can_cast(a.dtype, t, casting='same_kind'))
|
|
assert_raises(TypeError, a.astype, t, casting='same_kind')
|
|
assert_(not np.can_cast(a.dtype, b.dtype, casting='no'))
|
|
assert_raises(TypeError, a.astype, b.dtype, casting='no')
|
|
|
|
# Check that non-'unsafe' casting can't change the set of field names
|
|
for casting in ['no', 'safe', 'equiv', 'same_kind']:
|
|
t = [('a', '>i4')]
|
|
assert_(not np.can_cast(a.dtype, t, casting=casting))
|
|
t = [('a', '>i4'), ('b', '<f8'), ('c', 'i4')]
|
|
assert_(not np.can_cast(a.dtype, t, casting=casting))
|
|
|
|
def test_objview(self):
|
|
# https://github.com/numpy/numpy/issues/3286
|
|
a = np.array([], dtype=[('a', 'f'), ('b', 'f'), ('c', 'O')])
|
|
a[['a', 'b']] # TypeError?
|
|
|
|
# https://github.com/numpy/numpy/issues/3253
|
|
dat2 = np.zeros(3, [('A', 'i'), ('B', '|O')])
|
|
dat2[['B', 'A']] # TypeError?
|
|
|
|
def test_setfield(self):
|
|
# https://github.com/numpy/numpy/issues/3126
|
|
struct_dt = np.dtype([('elem', 'i4', 5),])
|
|
dt = np.dtype([('field', 'i4', 10),('struct', struct_dt)])
|
|
x = np.zeros(1, dt)
|
|
x[0]['field'] = np.ones(10, dtype='i4')
|
|
x[0]['struct'] = np.ones(1, dtype=struct_dt)
|
|
assert_equal(x[0]['field'], np.ones(10, dtype='i4'))
|
|
|
|
def test_setfield_object(self):
|
|
# make sure object field assignment with ndarray value
|
|
# on void scalar mimics setitem behavior
|
|
b = np.zeros(1, dtype=[('x', 'O')])
|
|
# next line should work identically to b['x'][0] = np.arange(3)
|
|
b[0]['x'] = np.arange(3)
|
|
assert_equal(b[0]['x'], np.arange(3))
|
|
|
|
# check that broadcasting check still works
|
|
c = np.zeros(1, dtype=[('x', 'O', 5)])
|
|
|
|
def testassign():
|
|
c[0]['x'] = np.arange(3)
|
|
|
|
assert_raises(ValueError, testassign)
|
|
|
|
def test_zero_width_string(self):
|
|
# Test for PR #6430 / issues #473, #4955, #2585
|
|
|
|
dt = np.dtype([('I', int), ('S', 'S0')])
|
|
|
|
x = np.zeros(4, dtype=dt)
|
|
|
|
assert_equal(x['S'], [b'', b'', b'', b''])
|
|
assert_equal(x['S'].itemsize, 0)
|
|
|
|
x['S'] = ['a', 'b', 'c', 'd']
|
|
assert_equal(x['S'], [b'', b'', b'', b''])
|
|
assert_equal(x['I'], [0, 0, 0, 0])
|
|
|
|
# Variation on test case from #4955
|
|
x['S'][x['I'] == 0] = 'hello'
|
|
assert_equal(x['S'], [b'', b'', b'', b''])
|
|
assert_equal(x['I'], [0, 0, 0, 0])
|
|
|
|
# Variation on test case from #2585
|
|
x['S'] = 'A'
|
|
assert_equal(x['S'], [b'', b'', b'', b''])
|
|
assert_equal(x['I'], [0, 0, 0, 0])
|
|
|
|
# Allow zero-width dtypes in ndarray constructor
|
|
y = np.ndarray(4, dtype=x['S'].dtype)
|
|
assert_equal(y.itemsize, 0)
|
|
assert_equal(x['S'], y)
|
|
|
|
# More tests for indexing an array with zero-width fields
|
|
assert_equal(np.zeros(4, dtype=[('a', 'S0,S0'),
|
|
('b', 'u1')])['a'].itemsize, 0)
|
|
assert_equal(np.empty(3, dtype='S0,S0').itemsize, 0)
|
|
assert_equal(np.zeros(4, dtype='S0,u1')['f0'].itemsize, 0)
|
|
|
|
xx = x['S'].reshape((2, 2))
|
|
assert_equal(xx.itemsize, 0)
|
|
assert_equal(xx, [[b'', b''], [b'', b'']])
|
|
# check for no uninitialized memory due to viewing S0 array
|
|
assert_equal(xx[:].dtype, xx.dtype)
|
|
assert_array_equal(eval(repr(xx), dict(array=np.array)), xx)
|
|
|
|
b = io.BytesIO()
|
|
np.save(b, xx)
|
|
|
|
b.seek(0)
|
|
yy = np.load(b)
|
|
assert_equal(yy.itemsize, 0)
|
|
assert_equal(xx, yy)
|
|
|
|
with temppath(suffix='.npy') as tmp:
|
|
np.save(tmp, xx)
|
|
yy = np.load(tmp)
|
|
assert_equal(yy.itemsize, 0)
|
|
assert_equal(xx, yy)
|
|
|
|
def test_base_attr(self):
|
|
a = np.zeros(3, dtype='i4,f4')
|
|
b = a[0]
|
|
assert_(b.base is a)
|
|
|
|
def test_assignment(self):
|
|
def testassign(arr, v):
|
|
c = arr.copy()
|
|
c[0] = v # assign using setitem
|
|
c[1:] = v # assign using "dtype_transfer" code paths
|
|
return c
|
|
|
|
dt = np.dtype([('foo', 'i8'), ('bar', 'i8')])
|
|
arr = np.ones(2, dt)
|
|
v1 = np.array([(2,3)], dtype=[('foo', 'i8'), ('bar', 'i8')])
|
|
v2 = np.array([(2,3)], dtype=[('bar', 'i8'), ('foo', 'i8')])
|
|
v3 = np.array([(2,3)], dtype=[('bar', 'i8'), ('baz', 'i8')])
|
|
v4 = np.array([(2,)], dtype=[('bar', 'i8')])
|
|
v5 = np.array([(2,3)], dtype=[('foo', 'f8'), ('bar', 'f8')])
|
|
w = arr.view({'names': ['bar'], 'formats': ['i8'], 'offsets': [8]})
|
|
|
|
ans = np.array([(2,3),(2,3)], dtype=dt)
|
|
assert_equal(testassign(arr, v1), ans)
|
|
assert_equal(testassign(arr, v2), ans)
|
|
assert_equal(testassign(arr, v3), ans)
|
|
assert_raises(ValueError, lambda: testassign(arr, v4))
|
|
assert_equal(testassign(arr, v5), ans)
|
|
w[:] = 4
|
|
assert_equal(arr, np.array([(1,4),(1,4)], dtype=dt))
|
|
|
|
# test field-reordering, assignment by position, and self-assignment
|
|
a = np.array([(1,2,3)],
|
|
dtype=[('foo', 'i8'), ('bar', 'i8'), ('baz', 'f4')])
|
|
a[['foo', 'bar']] = a[['bar', 'foo']]
|
|
assert_equal(a[0].item(), (2,1,3))
|
|
|
|
# test that this works even for 'simple_unaligned' structs
|
|
# (ie, that PyArray_EquivTypes cares about field order too)
|
|
a = np.array([(1,2)], dtype=[('a', 'i4'), ('b', 'i4')])
|
|
a[['a', 'b']] = a[['b', 'a']]
|
|
assert_equal(a[0].item(), (2,1))
|
|
|
|
def test_scalar_assignment(self):
|
|
with assert_raises(ValueError):
|
|
arr = np.arange(25).reshape(5, 5)
|
|
arr.itemset(3)
|
|
|
|
def test_structuredscalar_indexing(self):
|
|
# test gh-7262
|
|
x = np.empty(shape=1, dtype="(2)3S,(2)3U")
|
|
assert_equal(x[["f0","f1"]][0], x[0][["f0","f1"]])
|
|
assert_equal(x[0], x[0][()])
|
|
|
|
def test_multiindex_titles(self):
|
|
a = np.zeros(4, dtype=[(('a', 'b'), 'i'), ('c', 'i'), ('d', 'i')])
|
|
assert_raises(KeyError, lambda : a[['a','c']])
|
|
assert_raises(KeyError, lambda : a[['a','a']])
|
|
assert_raises(ValueError, lambda : a[['b','b']]) # field exists, but repeated
|
|
a[['b','c']] # no exception
|
|
|
|
|
|
class TestBool:
|
|
def test_test_interning(self):
|
|
a0 = np.bool_(0)
|
|
b0 = np.bool_(False)
|
|
assert_(a0 is b0)
|
|
a1 = np.bool_(1)
|
|
b1 = np.bool_(True)
|
|
assert_(a1 is b1)
|
|
assert_(np.array([True])[0] is a1)
|
|
assert_(np.array(True)[()] is a1)
|
|
|
|
def test_sum(self):
|
|
d = np.ones(101, dtype=bool)
|
|
assert_equal(d.sum(), d.size)
|
|
assert_equal(d[::2].sum(), d[::2].size)
|
|
assert_equal(d[::-2].sum(), d[::-2].size)
|
|
|
|
d = np.frombuffer(b'\xff\xff' * 100, dtype=bool)
|
|
assert_equal(d.sum(), d.size)
|
|
assert_equal(d[::2].sum(), d[::2].size)
|
|
assert_equal(d[::-2].sum(), d[::-2].size)
|
|
|
|
def check_count_nonzero(self, power, length):
|
|
powers = [2 ** i for i in range(length)]
|
|
for i in range(2**power):
|
|
l = [(i & x) != 0 for x in powers]
|
|
a = np.array(l, dtype=bool)
|
|
c = builtins.sum(l)
|
|
assert_equal(np.count_nonzero(a), c)
|
|
av = a.view(np.uint8)
|
|
av *= 3
|
|
assert_equal(np.count_nonzero(a), c)
|
|
av *= 4
|
|
assert_equal(np.count_nonzero(a), c)
|
|
av[av != 0] = 0xFF
|
|
assert_equal(np.count_nonzero(a), c)
|
|
|
|
def test_count_nonzero(self):
|
|
# check all 12 bit combinations in a length 17 array
|
|
# covers most cases of the 16 byte unrolled code
|
|
self.check_count_nonzero(12, 17)
|
|
|
|
@pytest.mark.slow
|
|
def test_count_nonzero_all(self):
|
|
# check all combinations in a length 17 array
|
|
# covers all cases of the 16 byte unrolled code
|
|
self.check_count_nonzero(17, 17)
|
|
|
|
def test_count_nonzero_unaligned(self):
|
|
# prevent mistakes as e.g. gh-4060
|
|
for o in range(7):
|
|
a = np.zeros((18,), dtype=bool)[o+1:]
|
|
a[:o] = True
|
|
assert_equal(np.count_nonzero(a), builtins.sum(a.tolist()))
|
|
a = np.ones((18,), dtype=bool)[o+1:]
|
|
a[:o] = False
|
|
assert_equal(np.count_nonzero(a), builtins.sum(a.tolist()))
|
|
|
|
def _test_cast_from_flexible(self, dtype):
|
|
# empty string -> false
|
|
for n in range(3):
|
|
v = np.array(b'', (dtype, n))
|
|
assert_equal(bool(v), False)
|
|
assert_equal(bool(v[()]), False)
|
|
assert_equal(v.astype(bool), False)
|
|
assert_(isinstance(v.astype(bool), np.ndarray))
|
|
assert_(v[()].astype(bool) is np.False_)
|
|
|
|
# anything else -> true
|
|
for n in range(1, 4):
|
|
for val in [b'a', b'0', b' ']:
|
|
v = np.array(val, (dtype, n))
|
|
assert_equal(bool(v), True)
|
|
assert_equal(bool(v[()]), True)
|
|
assert_equal(v.astype(bool), True)
|
|
assert_(isinstance(v.astype(bool), np.ndarray))
|
|
assert_(v[()].astype(bool) is np.True_)
|
|
|
|
def test_cast_from_void(self):
|
|
self._test_cast_from_flexible(np.void)
|
|
|
|
@pytest.mark.xfail(reason="See gh-9847")
|
|
def test_cast_from_unicode(self):
|
|
self._test_cast_from_flexible(np.unicode_)
|
|
|
|
@pytest.mark.xfail(reason="See gh-9847")
|
|
def test_cast_from_bytes(self):
|
|
self._test_cast_from_flexible(np.bytes_)
|
|
|
|
|
|
class TestZeroSizeFlexible:
|
|
@staticmethod
|
|
def _zeros(shape, dtype=str):
|
|
dtype = np.dtype(dtype)
|
|
if dtype == np.void:
|
|
return np.zeros(shape, dtype=(dtype, 0))
|
|
|
|
# not constructable directly
|
|
dtype = np.dtype([('x', dtype, 0)])
|
|
return np.zeros(shape, dtype=dtype)['x']
|
|
|
|
def test_create(self):
|
|
zs = self._zeros(10, bytes)
|
|
assert_equal(zs.itemsize, 0)
|
|
zs = self._zeros(10, np.void)
|
|
assert_equal(zs.itemsize, 0)
|
|
zs = self._zeros(10, str)
|
|
assert_equal(zs.itemsize, 0)
|
|
|
|
def _test_sort_partition(self, name, kinds, **kwargs):
|
|
# Previously, these would all hang
|
|
for dt in [bytes, np.void, str]:
|
|
zs = self._zeros(10, dt)
|
|
sort_method = getattr(zs, name)
|
|
sort_func = getattr(np, name)
|
|
for kind in kinds:
|
|
sort_method(kind=kind, **kwargs)
|
|
sort_func(zs, kind=kind, **kwargs)
|
|
|
|
def test_sort(self):
|
|
self._test_sort_partition('sort', kinds='qhs')
|
|
|
|
def test_argsort(self):
|
|
self._test_sort_partition('argsort', kinds='qhs')
|
|
|
|
def test_partition(self):
|
|
self._test_sort_partition('partition', kinds=['introselect'], kth=2)
|
|
|
|
def test_argpartition(self):
|
|
self._test_sort_partition('argpartition', kinds=['introselect'], kth=2)
|
|
|
|
def test_resize(self):
|
|
# previously an error
|
|
for dt in [bytes, np.void, str]:
|
|
zs = self._zeros(10, dt)
|
|
zs.resize(25)
|
|
zs.resize((10, 10))
|
|
|
|
def test_view(self):
|
|
for dt in [bytes, np.void, str]:
|
|
zs = self._zeros(10, dt)
|
|
|
|
# viewing as itself should be allowed
|
|
assert_equal(zs.view(dt).dtype, np.dtype(dt))
|
|
|
|
# viewing as any non-empty type gives an empty result
|
|
assert_equal(zs.view((dt, 1)).shape, (0,))
|
|
|
|
def test_dumps(self):
|
|
zs = self._zeros(10, int)
|
|
assert_equal(zs, pickle.loads(zs.dumps()))
|
|
|
|
def test_pickle(self):
|
|
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
|
|
for dt in [bytes, np.void, str]:
|
|
zs = self._zeros(10, dt)
|
|
p = pickle.dumps(zs, protocol=proto)
|
|
zs2 = pickle.loads(p)
|
|
|
|
assert_equal(zs.dtype, zs2.dtype)
|
|
|
|
@pytest.mark.skipif(pickle.HIGHEST_PROTOCOL < 5,
|
|
reason="requires pickle protocol 5")
|
|
def test_pickle_with_buffercallback(self):
|
|
array = np.arange(10)
|
|
buffers = []
|
|
bytes_string = pickle.dumps(array, buffer_callback=buffers.append,
|
|
protocol=5)
|
|
array_from_buffer = pickle.loads(bytes_string, buffers=buffers)
|
|
# when using pickle protocol 5 with buffer callbacks,
|
|
# array_from_buffer is reconstructed from a buffer holding a view
|
|
# to the initial array's data, so modifying an element in array
|
|
# should modify it in array_from_buffer too.
|
|
array[0] = -1
|
|
assert array_from_buffer[0] == -1, array_from_buffer[0]
|
|
|
|
|
|
class TestMethods:
|
|
|
|
sort_kinds = ['quicksort', 'heapsort', 'stable']
|
|
|
|
def test_compress(self):
|
|
tgt = [[5, 6, 7, 8, 9]]
|
|
arr = np.arange(10).reshape(2, 5)
|
|
out = arr.compress([0, 1], axis=0)
|
|
assert_equal(out, tgt)
|
|
|
|
tgt = [[1, 3], [6, 8]]
|
|
out = arr.compress([0, 1, 0, 1, 0], axis=1)
|
|
assert_equal(out, tgt)
|
|
|
|
tgt = [[1], [6]]
|
|
arr = np.arange(10).reshape(2, 5)
|
|
out = arr.compress([0, 1], axis=1)
|
|
assert_equal(out, tgt)
|
|
|
|
arr = np.arange(10).reshape(2, 5)
|
|
out = arr.compress([0, 1])
|
|
assert_equal(out, 1)
|
|
|
|
def test_choose(self):
|
|
x = 2*np.ones((3,), dtype=int)
|
|
y = 3*np.ones((3,), dtype=int)
|
|
x2 = 2*np.ones((2, 3), dtype=int)
|
|
y2 = 3*np.ones((2, 3), dtype=int)
|
|
ind = np.array([0, 0, 1])
|
|
|
|
A = ind.choose((x, y))
|
|
assert_equal(A, [2, 2, 3])
|
|
|
|
A = ind.choose((x2, y2))
|
|
assert_equal(A, [[2, 2, 3], [2, 2, 3]])
|
|
|
|
A = ind.choose((x, y2))
|
|
assert_equal(A, [[2, 2, 3], [2, 2, 3]])
|
|
|
|
oned = np.ones(1)
|
|
# gh-12031, caused SEGFAULT
|
|
assert_raises(TypeError, oned.choose,np.void(0), [oned])
|
|
|
|
# gh-6272 check overlap on out
|
|
x = np.arange(5)
|
|
y = np.choose([0,0,0], [x[:3], x[:3], x[:3]], out=x[1:4], mode='wrap')
|
|
assert_equal(y, np.array([0, 1, 2]))
|
|
|
|
def test_prod(self):
|
|
ba = [1, 2, 10, 11, 6, 5, 4]
|
|
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
|
|
|
|
for ctype in [np.int16, np.uint16, np.int32, np.uint32,
|
|
np.float32, np.float64, np.complex64, np.complex128]:
|
|
a = np.array(ba, ctype)
|
|
a2 = np.array(ba2, ctype)
|
|
if ctype in ['1', 'b']:
|
|
assert_raises(ArithmeticError, a.prod)
|
|
assert_raises(ArithmeticError, a2.prod, axis=1)
|
|
else:
|
|
assert_equal(a.prod(axis=0), 26400)
|
|
assert_array_equal(a2.prod(axis=0),
|
|
np.array([50, 36, 84, 180], ctype))
|
|
assert_array_equal(a2.prod(axis=-1),
|
|
np.array([24, 1890, 600], ctype))
|
|
|
|
def test_repeat(self):
|
|
m = np.array([1, 2, 3, 4, 5, 6])
|
|
m_rect = m.reshape((2, 3))
|
|
|
|
A = m.repeat([1, 3, 2, 1, 1, 2])
|
|
assert_equal(A, [1, 2, 2, 2, 3,
|
|
3, 4, 5, 6, 6])
|
|
|
|
A = m.repeat(2)
|
|
assert_equal(A, [1, 1, 2, 2, 3, 3,
|
|
4, 4, 5, 5, 6, 6])
|
|
|
|
A = m_rect.repeat([2, 1], axis=0)
|
|
assert_equal(A, [[1, 2, 3],
|
|
[1, 2, 3],
|
|
[4, 5, 6]])
|
|
|
|
A = m_rect.repeat([1, 3, 2], axis=1)
|
|
assert_equal(A, [[1, 2, 2, 2, 3, 3],
|
|
[4, 5, 5, 5, 6, 6]])
|
|
|
|
A = m_rect.repeat(2, axis=0)
|
|
assert_equal(A, [[1, 2, 3],
|
|
[1, 2, 3],
|
|
[4, 5, 6],
|
|
[4, 5, 6]])
|
|
|
|
A = m_rect.repeat(2, axis=1)
|
|
assert_equal(A, [[1, 1, 2, 2, 3, 3],
|
|
[4, 4, 5, 5, 6, 6]])
|
|
|
|
def test_reshape(self):
|
|
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
|
|
|
|
tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]
|
|
assert_equal(arr.reshape(2, 6), tgt)
|
|
|
|
tgt = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
|
|
assert_equal(arr.reshape(3, 4), tgt)
|
|
|
|
tgt = [[1, 10, 8, 6], [4, 2, 11, 9], [7, 5, 3, 12]]
|
|
assert_equal(arr.reshape((3, 4), order='F'), tgt)
|
|
|
|
tgt = [[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
|
|
assert_equal(arr.T.reshape((3, 4), order='C'), tgt)
|
|
|
|
def test_round(self):
|
|
def check_round(arr, expected, *round_args):
|
|
assert_equal(arr.round(*round_args), expected)
|
|
# With output array
|
|
out = np.zeros_like(arr)
|
|
res = arr.round(*round_args, out=out)
|
|
assert_equal(out, expected)
|
|
assert_equal(out, res)
|
|
|
|
check_round(np.array([1.2, 1.5]), [1, 2])
|
|
check_round(np.array(1.5), 2)
|
|
check_round(np.array([12.2, 15.5]), [10, 20], -1)
|
|
check_round(np.array([12.15, 15.51]), [12.2, 15.5], 1)
|
|
# Complex rounding
|
|
check_round(np.array([4.5 + 1.5j]), [4 + 2j])
|
|
check_round(np.array([12.5 + 15.5j]), [10 + 20j], -1)
|
|
|
|
def test_squeeze(self):
|
|
a = np.array([[[1], [2], [3]]])
|
|
assert_equal(a.squeeze(), [1, 2, 3])
|
|
assert_equal(a.squeeze(axis=(0,)), [[1], [2], [3]])
|
|
assert_raises(ValueError, a.squeeze, axis=(1,))
|
|
assert_equal(a.squeeze(axis=(2,)), [[1, 2, 3]])
|
|
|
|
def test_transpose(self):
|
|
a = np.array([[1, 2], [3, 4]])
|
|
assert_equal(a.transpose(), [[1, 3], [2, 4]])
|
|
assert_raises(ValueError, lambda: a.transpose(0))
|
|
assert_raises(ValueError, lambda: a.transpose(0, 0))
|
|
assert_raises(ValueError, lambda: a.transpose(0, 1, 2))
|
|
|
|
def test_sort(self):
|
|
# test ordering for floats and complex containing nans. It is only
|
|
# necessary to check the less-than comparison, so sorts that
|
|
# only follow the insertion sort path are sufficient. We only
|
|
# test doubles and complex doubles as the logic is the same.
|
|
|
|
# check doubles
|
|
msg = "Test real sort order with nans"
|
|
a = np.array([np.nan, 1, 0])
|
|
b = np.sort(a)
|
|
assert_equal(b, a[::-1], msg)
|
|
# check complex
|
|
msg = "Test complex sort order with nans"
|
|
a = np.zeros(9, dtype=np.complex128)
|
|
a.real += [np.nan, np.nan, np.nan, 1, 0, 1, 1, 0, 0]
|
|
a.imag += [np.nan, 1, 0, np.nan, np.nan, 1, 0, 1, 0]
|
|
b = np.sort(a)
|
|
assert_equal(b, a[::-1], msg)
|
|
|
|
# all c scalar sorts use the same code with different types
|
|
# so it suffices to run a quick check with one type. The number
|
|
# of sorted items must be greater than ~50 to check the actual
|
|
# algorithm because quick and merge sort fall over to insertion
|
|
# sort for small arrays.
|
|
|
|
@pytest.mark.parametrize('dtype', [np.uint8, np.uint16, np.uint32, np.uint64,
|
|
np.float16, np.float32, np.float64,
|
|
np.longdouble])
|
|
def test_sort_unsigned(self, dtype):
|
|
a = np.arange(101, dtype=dtype)
|
|
b = a[::-1].copy()
|
|
for kind in self.sort_kinds:
|
|
msg = "scalar sort, kind=%s" % kind
|
|
c = a.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, a, msg)
|
|
c = b.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, a, msg)
|
|
|
|
@pytest.mark.parametrize('dtype',
|
|
[np.int8, np.int16, np.int32, np.int64, np.float16,
|
|
np.float32, np.float64, np.longdouble])
|
|
def test_sort_signed(self, dtype):
|
|
a = np.arange(-50, 51, dtype=dtype)
|
|
b = a[::-1].copy()
|
|
for kind in self.sort_kinds:
|
|
msg = "scalar sort, kind=%s" % (kind)
|
|
c = a.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, a, msg)
|
|
c = b.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, a, msg)
|
|
|
|
@pytest.mark.parametrize('dtype', [np.float32, np.float64, np.longdouble])
|
|
@pytest.mark.parametrize('part', ['real', 'imag'])
|
|
def test_sort_complex(self, part, dtype):
|
|
# test complex sorts. These use the same code as the scalars
|
|
# but the compare function differs.
|
|
cdtype = {
|
|
np.single: np.csingle,
|
|
np.double: np.cdouble,
|
|
np.longdouble: np.clongdouble,
|
|
}[dtype]
|
|
a = np.arange(-50, 51, dtype=dtype)
|
|
b = a[::-1].copy()
|
|
ai = (a * (1+1j)).astype(cdtype)
|
|
bi = (b * (1+1j)).astype(cdtype)
|
|
setattr(ai, part, 1)
|
|
setattr(bi, part, 1)
|
|
for kind in self.sort_kinds:
|
|
msg = "complex sort, %s part == 1, kind=%s" % (part, kind)
|
|
c = ai.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, ai, msg)
|
|
c = bi.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, ai, msg)
|
|
|
|
def test_sort_complex_byte_swapping(self):
|
|
# test sorting of complex arrays requiring byte-swapping, gh-5441
|
|
for endianness in '<>':
|
|
for dt in np.typecodes['Complex']:
|
|
arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianness + dt)
|
|
c = arr.copy()
|
|
c.sort()
|
|
msg = 'byte-swapped complex sort, dtype={0}'.format(dt)
|
|
assert_equal(c, arr, msg)
|
|
|
|
@pytest.mark.parametrize('dtype', [np.bytes_, np.unicode_])
|
|
def test_sort_string(self, dtype):
|
|
# np.array will perform the encoding to bytes for us in the bytes test
|
|
a = np.array(['aaaaaaaa' + chr(i) for i in range(101)], dtype=dtype)
|
|
b = a[::-1].copy()
|
|
for kind in self.sort_kinds:
|
|
msg = "kind=%s" % kind
|
|
c = a.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, a, msg)
|
|
c = b.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, a, msg)
|
|
|
|
def test_sort_object(self):
|
|
# test object array sorts.
|
|
a = np.empty((101,), dtype=object)
|
|
a[:] = list(range(101))
|
|
b = a[::-1]
|
|
for kind in ['q', 'h', 'm']:
|
|
msg = "kind=%s" % kind
|
|
c = a.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, a, msg)
|
|
c = b.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, a, msg)
|
|
|
|
def test_sort_structured(self):
|
|
# test record array sorts.
|
|
dt = np.dtype([('f', float), ('i', int)])
|
|
a = np.array([(i, i) for i in range(101)], dtype=dt)
|
|
b = a[::-1]
|
|
for kind in ['q', 'h', 'm']:
|
|
msg = "kind=%s" % kind
|
|
c = a.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, a, msg)
|
|
c = b.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, a, msg)
|
|
|
|
@pytest.mark.parametrize('dtype', ['datetime64[D]', 'timedelta64[D]'])
|
|
def test_sort_time(self, dtype):
|
|
# test datetime64 and timedelta64 sorts.
|
|
a = np.arange(0, 101, dtype=dtype)
|
|
b = a[::-1]
|
|
for kind in ['q', 'h', 'm']:
|
|
msg = "kind=%s" % kind
|
|
c = a.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, a, msg)
|
|
c = b.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, a, msg)
|
|
|
|
def test_sort_axis(self):
|
|
# check axis handling. This should be the same for all type
|
|
# specific sorts, so we only check it for one type and one kind
|
|
a = np.array([[3, 2], [1, 0]])
|
|
b = np.array([[1, 0], [3, 2]])
|
|
c = np.array([[2, 3], [0, 1]])
|
|
d = a.copy()
|
|
d.sort(axis=0)
|
|
assert_equal(d, b, "test sort with axis=0")
|
|
d = a.copy()
|
|
d.sort(axis=1)
|
|
assert_equal(d, c, "test sort with axis=1")
|
|
d = a.copy()
|
|
d.sort()
|
|
assert_equal(d, c, "test sort with default axis")
|
|
|
|
def test_sort_size_0(self):
|
|
# check axis handling for multidimensional empty arrays
|
|
a = np.array([])
|
|
a.shape = (3, 2, 1, 0)
|
|
for axis in range(-a.ndim, a.ndim):
|
|
msg = 'test empty array sort with axis={0}'.format(axis)
|
|
assert_equal(np.sort(a, axis=axis), a, msg)
|
|
msg = 'test empty array sort with axis=None'
|
|
assert_equal(np.sort(a, axis=None), a.ravel(), msg)
|
|
|
|
def test_sort_bad_ordering(self):
|
|
# test generic class with bogus ordering,
|
|
# should not segfault.
|
|
class Boom:
|
|
def __lt__(self, other):
|
|
return True
|
|
|
|
a = np.array([Boom()] * 100, dtype=object)
|
|
for kind in self.sort_kinds:
|
|
msg = "kind=%s" % kind
|
|
c = a.copy()
|
|
c.sort(kind=kind)
|
|
assert_equal(c, a, msg)
|
|
|
|
def test_void_sort(self):
|
|
# gh-8210 - previously segfaulted
|
|
for i in range(4):
|
|
rand = np.random.randint(256, size=4000, dtype=np.uint8)
|
|
arr = rand.view('V4')
|
|
arr[::-1].sort()
|
|
|
|
dt = np.dtype([('val', 'i4', (1,))])
|
|
for i in range(4):
|
|
rand = np.random.randint(256, size=4000, dtype=np.uint8)
|
|
arr = rand.view(dt)
|
|
arr[::-1].sort()
|
|
|
|
def test_sort_raises(self):
|
|
#gh-9404
|
|
arr = np.array([0, datetime.now(), 1], dtype=object)
|
|
for kind in self.sort_kinds:
|
|
assert_raises(TypeError, arr.sort, kind=kind)
|
|
#gh-3879
|
|
class Raiser:
|
|
def raises_anything(*args, **kwargs):
|
|
raise TypeError("SOMETHING ERRORED")
|
|
__eq__ = __ne__ = __lt__ = __gt__ = __ge__ = __le__ = raises_anything
|
|
arr = np.array([[Raiser(), n] for n in range(10)]).reshape(-1)
|
|
np.random.shuffle(arr)
|
|
for kind in self.sort_kinds:
|
|
assert_raises(TypeError, arr.sort, kind=kind)
|
|
|
|
def test_sort_degraded(self):
|
|
# test degraded dataset would take minutes to run with normal qsort
|
|
d = np.arange(1000000)
|
|
do = d.copy()
|
|
x = d
|
|
# create a median of 3 killer where each median is the sorted second
|
|
# last element of the quicksort partition
|
|
while x.size > 3:
|
|
mid = x.size // 2
|
|
x[mid], x[-2] = x[-2], x[mid]
|
|
x = x[:-2]
|
|
|
|
assert_equal(np.sort(d), do)
|
|
assert_equal(d[np.argsort(d)], do)
|
|
|
|
def test_copy(self):
|
|
def assert_fortran(arr):
|
|
assert_(arr.flags.fortran)
|
|
assert_(arr.flags.f_contiguous)
|
|
assert_(not arr.flags.c_contiguous)
|
|
|
|
def assert_c(arr):
|
|
assert_(not arr.flags.fortran)
|
|
assert_(not arr.flags.f_contiguous)
|
|
assert_(arr.flags.c_contiguous)
|
|
|
|
a = np.empty((2, 2), order='F')
|
|
# Test copying a Fortran array
|
|
assert_c(a.copy())
|
|
assert_c(a.copy('C'))
|
|
assert_fortran(a.copy('F'))
|
|
assert_fortran(a.copy('A'))
|
|
|
|
# Now test starting with a C array.
|
|
a = np.empty((2, 2), order='C')
|
|
assert_c(a.copy())
|
|
assert_c(a.copy('C'))
|
|
assert_fortran(a.copy('F'))
|
|
assert_c(a.copy('A'))
|
|
|
|
def test_sort_order(self):
|
|
# Test sorting an array with fields
|
|
x1 = np.array([21, 32, 14])
|
|
x2 = np.array(['my', 'first', 'name'])
|
|
x3 = np.array([3.1, 4.5, 6.2])
|
|
r = np.rec.fromarrays([x1, x2, x3], names='id,word,number')
|
|
|
|
r.sort(order=['id'])
|
|
assert_equal(r.id, np.array([14, 21, 32]))
|
|
assert_equal(r.word, np.array(['name', 'my', 'first']))
|
|
assert_equal(r.number, np.array([6.2, 3.1, 4.5]))
|
|
|
|
r.sort(order=['word'])
|
|
assert_equal(r.id, np.array([32, 21, 14]))
|
|
assert_equal(r.word, np.array(['first', 'my', 'name']))
|
|
assert_equal(r.number, np.array([4.5, 3.1, 6.2]))
|
|
|
|
r.sort(order=['number'])
|
|
assert_equal(r.id, np.array([21, 32, 14]))
|
|
assert_equal(r.word, np.array(['my', 'first', 'name']))
|
|
assert_equal(r.number, np.array([3.1, 4.5, 6.2]))
|
|
|
|
assert_raises_regex(ValueError, 'duplicate',
|
|
lambda: r.sort(order=['id', 'id']))
|
|
|
|
if sys.byteorder == 'little':
|
|
strtype = '>i2'
|
|
else:
|
|
strtype = '<i2'
|
|
mydtype = [('name', strchar + '5'), ('col2', strtype)]
|
|
r = np.array([('a', 1), ('b', 255), ('c', 3), ('d', 258)],
|
|
dtype=mydtype)
|
|
r.sort(order='col2')
|
|
assert_equal(r['col2'], [1, 3, 255, 258])
|
|
assert_equal(r, np.array([('a', 1), ('c', 3), ('b', 255), ('d', 258)],
|
|
dtype=mydtype))
|
|
|
|
def test_argsort(self):
|
|
# all c scalar argsorts use the same code with different types
|
|
# so it suffices to run a quick check with one type. The number
|
|
# of sorted items must be greater than ~50 to check the actual
|
|
# algorithm because quick and merge sort fall over to insertion
|
|
# sort for small arrays.
|
|
|
|
for dtype in [np.int32, np.uint32, np.float32]:
|
|
a = np.arange(101, dtype=dtype)
|
|
b = a[::-1].copy()
|
|
for kind in self.sort_kinds:
|
|
msg = "scalar argsort, kind=%s, dtype=%s" % (kind, dtype)
|
|
assert_equal(a.copy().argsort(kind=kind), a, msg)
|
|
assert_equal(b.copy().argsort(kind=kind), b, msg)
|
|
|
|
# test complex argsorts. These use the same code as the scalars
|
|
# but the compare function differs.
|
|
ai = a*1j + 1
|
|
bi = b*1j + 1
|
|
for kind in self.sort_kinds:
|
|
msg = "complex argsort, kind=%s" % kind
|
|
assert_equal(ai.copy().argsort(kind=kind), a, msg)
|
|
assert_equal(bi.copy().argsort(kind=kind), b, msg)
|
|
ai = a + 1j
|
|
bi = b + 1j
|
|
for kind in self.sort_kinds:
|
|
msg = "complex argsort, kind=%s" % kind
|
|
assert_equal(ai.copy().argsort(kind=kind), a, msg)
|
|
assert_equal(bi.copy().argsort(kind=kind), b, msg)
|
|
|
|
# test argsort of complex arrays requiring byte-swapping, gh-5441
|
|
for endianness in '<>':
|
|
for dt in np.typecodes['Complex']:
|
|
arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianness + dt)
|
|
msg = 'byte-swapped complex argsort, dtype={0}'.format(dt)
|
|
assert_equal(arr.argsort(),
|
|
np.arange(len(arr), dtype=np.intp), msg)
|
|
|
|
# test string argsorts.
|
|
s = 'aaaaaaaa'
|
|
a = np.array([s + chr(i) for i in range(101)])
|
|
b = a[::-1].copy()
|
|
r = np.arange(101)
|
|
rr = r[::-1]
|
|
for kind in self.sort_kinds:
|
|
msg = "string argsort, kind=%s" % kind
|
|
assert_equal(a.copy().argsort(kind=kind), r, msg)
|
|
assert_equal(b.copy().argsort(kind=kind), rr, msg)
|
|
|
|
# test unicode argsorts.
|
|
s = 'aaaaaaaa'
|
|
a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode_)
|
|
b = a[::-1]
|
|
r = np.arange(101)
|
|
rr = r[::-1]
|
|
for kind in self.sort_kinds:
|
|
msg = "unicode argsort, kind=%s" % kind
|
|
assert_equal(a.copy().argsort(kind=kind), r, msg)
|
|
assert_equal(b.copy().argsort(kind=kind), rr, msg)
|
|
|
|
# test object array argsorts.
|
|
a = np.empty((101,), dtype=object)
|
|
a[:] = list(range(101))
|
|
b = a[::-1]
|
|
r = np.arange(101)
|
|
rr = r[::-1]
|
|
for kind in self.sort_kinds:
|
|
msg = "object argsort, kind=%s" % kind
|
|
assert_equal(a.copy().argsort(kind=kind), r, msg)
|
|
assert_equal(b.copy().argsort(kind=kind), rr, msg)
|
|
|
|
# test structured array argsorts.
|
|
dt = np.dtype([('f', float), ('i', int)])
|
|
a = np.array([(i, i) for i in range(101)], dtype=dt)
|
|
b = a[::-1]
|
|
r = np.arange(101)
|
|
rr = r[::-1]
|
|
for kind in self.sort_kinds:
|
|
msg = "structured array argsort, kind=%s" % kind
|
|
assert_equal(a.copy().argsort(kind=kind), r, msg)
|
|
assert_equal(b.copy().argsort(kind=kind), rr, msg)
|
|
|
|
# test datetime64 argsorts.
|
|
a = np.arange(0, 101, dtype='datetime64[D]')
|
|
b = a[::-1]
|
|
r = np.arange(101)
|
|
rr = r[::-1]
|
|
for kind in ['q', 'h', 'm']:
|
|
msg = "datetime64 argsort, kind=%s" % kind
|
|
assert_equal(a.copy().argsort(kind=kind), r, msg)
|
|
assert_equal(b.copy().argsort(kind=kind), rr, msg)
|
|
|
|
# test timedelta64 argsorts.
|
|
a = np.arange(0, 101, dtype='timedelta64[D]')
|
|
b = a[::-1]
|
|
r = np.arange(101)
|
|
rr = r[::-1]
|
|
for kind in ['q', 'h', 'm']:
|
|
msg = "timedelta64 argsort, kind=%s" % kind
|
|
assert_equal(a.copy().argsort(kind=kind), r, msg)
|
|
assert_equal(b.copy().argsort(kind=kind), rr, msg)
|
|
|
|
# check axis handling. This should be the same for all type
|
|
# specific argsorts, so we only check it for one type and one kind
|
|
a = np.array([[3, 2], [1, 0]])
|
|
b = np.array([[1, 1], [0, 0]])
|
|
c = np.array([[1, 0], [1, 0]])
|
|
assert_equal(a.copy().argsort(axis=0), b)
|
|
assert_equal(a.copy().argsort(axis=1), c)
|
|
assert_equal(a.copy().argsort(), c)
|
|
|
|
# check axis handling for multidimensional empty arrays
|
|
a = np.array([])
|
|
a.shape = (3, 2, 1, 0)
|
|
for axis in range(-a.ndim, a.ndim):
|
|
msg = 'test empty array argsort with axis={0}'.format(axis)
|
|
assert_equal(np.argsort(a, axis=axis),
|
|
np.zeros_like(a, dtype=np.intp), msg)
|
|
msg = 'test empty array argsort with axis=None'
|
|
assert_equal(np.argsort(a, axis=None),
|
|
np.zeros_like(a.ravel(), dtype=np.intp), msg)
|
|
|
|
# check that stable argsorts are stable
|
|
r = np.arange(100)
|
|
# scalars
|
|
a = np.zeros(100)
|
|
assert_equal(a.argsort(kind='m'), r)
|
|
# complex
|
|
a = np.zeros(100, dtype=complex)
|
|
assert_equal(a.argsort(kind='m'), r)
|
|
# string
|
|
a = np.array(['aaaaaaaaa' for i in range(100)])
|
|
assert_equal(a.argsort(kind='m'), r)
|
|
# unicode
|
|
a = np.array(['aaaaaaaaa' for i in range(100)], dtype=np.unicode_)
|
|
assert_equal(a.argsort(kind='m'), r)
|
|
|
|
def test_sort_unicode_kind(self):
|
|
d = np.arange(10)
|
|
k = b'\xc3\xa4'.decode("UTF8")
|
|
assert_raises(ValueError, d.sort, kind=k)
|
|
assert_raises(ValueError, d.argsort, kind=k)
|
|
|
|
def test_searchsorted(self):
|
|
# test for floats and complex containing nans. The logic is the
|
|
# same for all float types so only test double types for now.
|
|
# The search sorted routines use the compare functions for the
|
|
# array type, so this checks if that is consistent with the sort
|
|
# order.
|
|
|
|
# check double
|
|
a = np.array([0, 1, np.nan])
|
|
msg = "Test real searchsorted with nans, side='l'"
|
|
b = a.searchsorted(a, side='l')
|
|
assert_equal(b, np.arange(3), msg)
|
|
msg = "Test real searchsorted with nans, side='r'"
|
|
b = a.searchsorted(a, side='r')
|
|
assert_equal(b, np.arange(1, 4), msg)
|
|
# check keyword arguments
|
|
a.searchsorted(v=1)
|
|
# check double complex
|
|
a = np.zeros(9, dtype=np.complex128)
|
|
a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan]
|
|
a.imag += [0, 1, 0, 1, np.nan, np.nan, 0, 1, np.nan]
|
|
msg = "Test complex searchsorted with nans, side='l'"
|
|
b = a.searchsorted(a, side='l')
|
|
assert_equal(b, np.arange(9), msg)
|
|
msg = "Test complex searchsorted with nans, side='r'"
|
|
b = a.searchsorted(a, side='r')
|
|
assert_equal(b, np.arange(1, 10), msg)
|
|
msg = "Test searchsorted with little endian, side='l'"
|
|
a = np.array([0, 128], dtype='<i4')
|
|
b = a.searchsorted(np.array(128, dtype='<i4'))
|
|
assert_equal(b, 1, msg)
|
|
msg = "Test searchsorted with big endian, side='l'"
|
|
a = np.array([0, 128], dtype='>i4')
|
|
b = a.searchsorted(np.array(128, dtype='>i4'))
|
|
assert_equal(b, 1, msg)
|
|
|
|
# Check 0 elements
|
|
a = np.ones(0)
|
|
b = a.searchsorted([0, 1, 2], 'l')
|
|
assert_equal(b, [0, 0, 0])
|
|
b = a.searchsorted([0, 1, 2], 'r')
|
|
assert_equal(b, [0, 0, 0])
|
|
a = np.ones(1)
|
|
# Check 1 element
|
|
b = a.searchsorted([0, 1, 2], 'l')
|
|
assert_equal(b, [0, 0, 1])
|
|
b = a.searchsorted([0, 1, 2], 'r')
|
|
assert_equal(b, [0, 1, 1])
|
|
# Check all elements equal
|
|
a = np.ones(2)
|
|
b = a.searchsorted([0, 1, 2], 'l')
|
|
assert_equal(b, [0, 0, 2])
|
|
b = a.searchsorted([0, 1, 2], 'r')
|
|
assert_equal(b, [0, 2, 2])
|
|
|
|
# Test searching unaligned array
|
|
a = np.arange(10)
|
|
aligned = np.empty(a.itemsize * a.size + 1, 'uint8')
|
|
unaligned = aligned[1:].view(a.dtype)
|
|
unaligned[:] = a
|
|
# Test searching unaligned array
|
|
b = unaligned.searchsorted(a, 'l')
|
|
assert_equal(b, a)
|
|
b = unaligned.searchsorted(a, 'r')
|
|
assert_equal(b, a + 1)
|
|
# Test searching for unaligned keys
|
|
b = a.searchsorted(unaligned, 'l')
|
|
assert_equal(b, a)
|
|
b = a.searchsorted(unaligned, 'r')
|
|
assert_equal(b, a + 1)
|
|
|
|
# Test smart resetting of binsearch indices
|
|
a = np.arange(5)
|
|
b = a.searchsorted([6, 5, 4], 'l')
|
|
assert_equal(b, [5, 5, 4])
|
|
b = a.searchsorted([6, 5, 4], 'r')
|
|
assert_equal(b, [5, 5, 5])
|
|
|
|
# Test all type specific binary search functions
|
|
types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'],
|
|
np.typecodes['Datetime'], '?O'))
|
|
for dt in types:
|
|
if dt == 'M':
|
|
dt = 'M8[D]'
|
|
if dt == '?':
|
|
a = np.arange(2, dtype=dt)
|
|
out = np.arange(2)
|
|
else:
|
|
a = np.arange(0, 5, dtype=dt)
|
|
out = np.arange(5)
|
|
b = a.searchsorted(a, 'l')
|
|
assert_equal(b, out)
|
|
b = a.searchsorted(a, 'r')
|
|
assert_equal(b, out + 1)
|
|
# Test empty array, use a fresh array to get warnings in
|
|
# valgrind if access happens.
|
|
e = np.ndarray(shape=0, buffer=b'', dtype=dt)
|
|
b = e.searchsorted(a, 'l')
|
|
assert_array_equal(b, np.zeros(len(a), dtype=np.intp))
|
|
b = a.searchsorted(e, 'l')
|
|
assert_array_equal(b, np.zeros(0, dtype=np.intp))
|
|
|
|
def test_searchsorted_unicode(self):
|
|
# Test searchsorted on unicode strings.
|
|
|
|
# 1.6.1 contained a string length miscalculation in
|
|
# arraytypes.c.src:UNICODE_compare() which manifested as
|
|
# incorrect/inconsistent results from searchsorted.
|
|
a = np.array(['P:\\20x_dapi_cy3\\20x_dapi_cy3_20100185_1',
|
|
'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100186_1',
|
|
'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100187_1',
|
|
'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100189_1',
|
|
'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100190_1',
|
|
'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100191_1',
|
|
'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100192_1',
|
|
'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100193_1',
|
|
'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100194_1',
|
|
'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100195_1',
|
|
'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100196_1',
|
|
'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100197_1',
|
|
'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100198_1',
|
|
'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100199_1'],
|
|
dtype=np.unicode_)
|
|
ind = np.arange(len(a))
|
|
assert_equal([a.searchsorted(v, 'left') for v in a], ind)
|
|
assert_equal([a.searchsorted(v, 'right') for v in a], ind + 1)
|
|
assert_equal([a.searchsorted(a[i], 'left') for i in ind], ind)
|
|
assert_equal([a.searchsorted(a[i], 'right') for i in ind], ind + 1)
|
|
|
|
def test_searchsorted_with_invalid_sorter(self):
|
|
a = np.array([5, 2, 1, 3, 4])
|
|
s = np.argsort(a)
|
|
assert_raises(TypeError, np.searchsorted, a, 0,
|
|
sorter=np.array((1, (2, 3)), dtype=object))
|
|
assert_raises(TypeError, np.searchsorted, a, 0, sorter=[1.1])
|
|
assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4])
|
|
assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4, 5, 6])
|
|
|
|
# bounds check
|
|
assert_raises(ValueError, np.searchsorted, a, 4, sorter=[0, 1, 2, 3, 5])
|
|
assert_raises(ValueError, np.searchsorted, a, 0, sorter=[-1, 0, 1, 2, 3])
|
|
assert_raises(ValueError, np.searchsorted, a, 0, sorter=[4, 0, -1, 2, 3])
|
|
|
|
def test_searchsorted_with_sorter(self):
|
|
a = np.random.rand(300)
|
|
s = a.argsort()
|
|
b = np.sort(a)
|
|
k = np.linspace(0, 1, 20)
|
|
assert_equal(b.searchsorted(k), a.searchsorted(k, sorter=s))
|
|
|
|
a = np.array([0, 1, 2, 3, 5]*20)
|
|
s = a.argsort()
|
|
k = [0, 1, 2, 3, 5]
|
|
expected = [0, 20, 40, 60, 80]
|
|
assert_equal(a.searchsorted(k, side='l', sorter=s), expected)
|
|
expected = [20, 40, 60, 80, 100]
|
|
assert_equal(a.searchsorted(k, side='r', sorter=s), expected)
|
|
|
|
# Test searching unaligned array
|
|
keys = np.arange(10)
|
|
a = keys.copy()
|
|
np.random.shuffle(s)
|
|
s = a.argsort()
|
|
aligned = np.empty(a.itemsize * a.size + 1, 'uint8')
|
|
unaligned = aligned[1:].view(a.dtype)
|
|
# Test searching unaligned array
|
|
unaligned[:] = a
|
|
b = unaligned.searchsorted(keys, 'l', s)
|
|
assert_equal(b, keys)
|
|
b = unaligned.searchsorted(keys, 'r', s)
|
|
assert_equal(b, keys + 1)
|
|
# Test searching for unaligned keys
|
|
unaligned[:] = keys
|
|
b = a.searchsorted(unaligned, 'l', s)
|
|
assert_equal(b, keys)
|
|
b = a.searchsorted(unaligned, 'r', s)
|
|
assert_equal(b, keys + 1)
|
|
|
|
# Test all type specific indirect binary search functions
|
|
types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'],
|
|
np.typecodes['Datetime'], '?O'))
|
|
for dt in types:
|
|
if dt == 'M':
|
|
dt = 'M8[D]'
|
|
if dt == '?':
|
|
a = np.array([1, 0], dtype=dt)
|
|
# We want the sorter array to be of a type that is different
|
|
# from np.intp in all platforms, to check for #4698
|
|
s = np.array([1, 0], dtype=np.int16)
|
|
out = np.array([1, 0])
|
|
else:
|
|
a = np.array([3, 4, 1, 2, 0], dtype=dt)
|
|
# We want the sorter array to be of a type that is different
|
|
# from np.intp in all platforms, to check for #4698
|
|
s = np.array([4, 2, 3, 0, 1], dtype=np.int16)
|
|
out = np.array([3, 4, 1, 2, 0], dtype=np.intp)
|
|
b = a.searchsorted(a, 'l', s)
|
|
assert_equal(b, out)
|
|
b = a.searchsorted(a, 'r', s)
|
|
assert_equal(b, out + 1)
|
|
# Test empty array, use a fresh array to get warnings in
|
|
# valgrind if access happens.
|
|
e = np.ndarray(shape=0, buffer=b'', dtype=dt)
|
|
b = e.searchsorted(a, 'l', s[:0])
|
|
assert_array_equal(b, np.zeros(len(a), dtype=np.intp))
|
|
b = a.searchsorted(e, 'l', s)
|
|
assert_array_equal(b, np.zeros(0, dtype=np.intp))
|
|
|
|
# Test non-contiguous sorter array
|
|
a = np.array([3, 4, 1, 2, 0])
|
|
srt = np.empty((10,), dtype=np.intp)
|
|
srt[1::2] = -1
|
|
srt[::2] = [4, 2, 3, 0, 1]
|
|
s = srt[::2]
|
|
out = np.array([3, 4, 1, 2, 0], dtype=np.intp)
|
|
b = a.searchsorted(a, 'l', s)
|
|
assert_equal(b, out)
|
|
b = a.searchsorted(a, 'r', s)
|
|
assert_equal(b, out + 1)
|
|
|
|
def test_searchsorted_return_type(self):
|
|
# Functions returning indices should always return base ndarrays
|
|
class A(np.ndarray):
|
|
pass
|
|
a = np.arange(5).view(A)
|
|
b = np.arange(1, 3).view(A)
|
|
s = np.arange(5).view(A)
|
|
assert_(not isinstance(a.searchsorted(b, 'l'), A))
|
|
assert_(not isinstance(a.searchsorted(b, 'r'), A))
|
|
assert_(not isinstance(a.searchsorted(b, 'l', s), A))
|
|
assert_(not isinstance(a.searchsorted(b, 'r', s), A))
|
|
|
|
def test_argpartition_out_of_range(self):
|
|
# Test out of range values in kth raise an error, gh-5469
|
|
d = np.arange(10)
|
|
assert_raises(ValueError, d.argpartition, 10)
|
|
assert_raises(ValueError, d.argpartition, -11)
|
|
# Test also for generic type argpartition, which uses sorting
|
|
# and used to not bound check kth
|
|
d_obj = np.arange(10, dtype=object)
|
|
assert_raises(ValueError, d_obj.argpartition, 10)
|
|
assert_raises(ValueError, d_obj.argpartition, -11)
|
|
|
|
def test_partition_out_of_range(self):
|
|
# Test out of range values in kth raise an error, gh-5469
|
|
d = np.arange(10)
|
|
assert_raises(ValueError, d.partition, 10)
|
|
assert_raises(ValueError, d.partition, -11)
|
|
# Test also for generic type partition, which uses sorting
|
|
# and used to not bound check kth
|
|
d_obj = np.arange(10, dtype=object)
|
|
assert_raises(ValueError, d_obj.partition, 10)
|
|
assert_raises(ValueError, d_obj.partition, -11)
|
|
|
|
def test_argpartition_integer(self):
|
|
# Test non-integer values in kth raise an error/
|
|
d = np.arange(10)
|
|
assert_raises(TypeError, d.argpartition, 9.)
|
|
# Test also for generic type argpartition, which uses sorting
|
|
# and used to not bound check kth
|
|
d_obj = np.arange(10, dtype=object)
|
|
assert_raises(TypeError, d_obj.argpartition, 9.)
|
|
|
|
def test_partition_integer(self):
|
|
# Test out of range values in kth raise an error, gh-5469
|
|
d = np.arange(10)
|
|
assert_raises(TypeError, d.partition, 9.)
|
|
# Test also for generic type partition, which uses sorting
|
|
# and used to not bound check kth
|
|
d_obj = np.arange(10, dtype=object)
|
|
assert_raises(TypeError, d_obj.partition, 9.)
|
|
|
|
def test_partition_empty_array(self):
|
|
# check axis handling for multidimensional empty arrays
|
|
a = np.array([])
|
|
a.shape = (3, 2, 1, 0)
|
|
for axis in range(-a.ndim, a.ndim):
|
|
msg = 'test empty array partition with axis={0}'.format(axis)
|
|
assert_equal(np.partition(a, 0, axis=axis), a, msg)
|
|
msg = 'test empty array partition with axis=None'
|
|
assert_equal(np.partition(a, 0, axis=None), a.ravel(), msg)
|
|
|
|
def test_argpartition_empty_array(self):
|
|
# check axis handling for multidimensional empty arrays
|
|
a = np.array([])
|
|
a.shape = (3, 2, 1, 0)
|
|
for axis in range(-a.ndim, a.ndim):
|
|
msg = 'test empty array argpartition with axis={0}'.format(axis)
|
|
assert_equal(np.partition(a, 0, axis=axis),
|
|
np.zeros_like(a, dtype=np.intp), msg)
|
|
msg = 'test empty array argpartition with axis=None'
|
|
assert_equal(np.partition(a, 0, axis=None),
|
|
np.zeros_like(a.ravel(), dtype=np.intp), msg)
|
|
|
|
def test_partition(self):
|
|
d = np.arange(10)
|
|
assert_raises(TypeError, np.partition, d, 2, kind=1)
|
|
assert_raises(ValueError, np.partition, d, 2, kind="nonsense")
|
|
assert_raises(ValueError, np.argpartition, d, 2, kind="nonsense")
|
|
assert_raises(ValueError, d.partition, 2, axis=0, kind="nonsense")
|
|
assert_raises(ValueError, d.argpartition, 2, axis=0, kind="nonsense")
|
|
for k in ("introselect",):
|
|
d = np.array([])
|
|
assert_array_equal(np.partition(d, 0, kind=k), d)
|
|
assert_array_equal(np.argpartition(d, 0, kind=k), d)
|
|
d = np.ones(1)
|
|
assert_array_equal(np.partition(d, 0, kind=k)[0], d)
|
|
assert_array_equal(d[np.argpartition(d, 0, kind=k)],
|
|
np.partition(d, 0, kind=k))
|
|
|
|
# kth not modified
|
|
kth = np.array([30, 15, 5])
|
|
okth = kth.copy()
|
|
np.partition(np.arange(40), kth)
|
|
assert_array_equal(kth, okth)
|
|
|
|
for r in ([2, 1], [1, 2], [1, 1]):
|
|
d = np.array(r)
|
|
tgt = np.sort(d)
|
|
assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0])
|
|
assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1])
|
|
assert_array_equal(d[np.argpartition(d, 0, kind=k)],
|
|
np.partition(d, 0, kind=k))
|
|
assert_array_equal(d[np.argpartition(d, 1, kind=k)],
|
|
np.partition(d, 1, kind=k))
|
|
for i in range(d.size):
|
|
d[i:].partition(0, kind=k)
|
|
assert_array_equal(d, tgt)
|
|
|
|
for r in ([3, 2, 1], [1, 2, 3], [2, 1, 3], [2, 3, 1],
|
|
[1, 1, 1], [1, 2, 2], [2, 2, 1], [1, 2, 1]):
|
|
d = np.array(r)
|
|
tgt = np.sort(d)
|
|
assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0])
|
|
assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1])
|
|
assert_array_equal(np.partition(d, 2, kind=k)[2], tgt[2])
|
|
assert_array_equal(d[np.argpartition(d, 0, kind=k)],
|
|
np.partition(d, 0, kind=k))
|
|
assert_array_equal(d[np.argpartition(d, 1, kind=k)],
|
|
np.partition(d, 1, kind=k))
|
|
assert_array_equal(d[np.argpartition(d, 2, kind=k)],
|
|
np.partition(d, 2, kind=k))
|
|
for i in range(d.size):
|
|
d[i:].partition(0, kind=k)
|
|
assert_array_equal(d, tgt)
|
|
|
|
d = np.ones(50)
|
|
assert_array_equal(np.partition(d, 0, kind=k), d)
|
|
assert_array_equal(d[np.argpartition(d, 0, kind=k)],
|
|
np.partition(d, 0, kind=k))
|
|
|
|
# sorted
|
|
d = np.arange(49)
|
|
assert_equal(np.partition(d, 5, kind=k)[5], 5)
|
|
assert_equal(np.partition(d, 15, kind=k)[15], 15)
|
|
assert_array_equal(d[np.argpartition(d, 5, kind=k)],
|
|
np.partition(d, 5, kind=k))
|
|
assert_array_equal(d[np.argpartition(d, 15, kind=k)],
|
|
np.partition(d, 15, kind=k))
|
|
|
|
# rsorted
|
|
d = np.arange(47)[::-1]
|
|
assert_equal(np.partition(d, 6, kind=k)[6], 6)
|
|
assert_equal(np.partition(d, 16, kind=k)[16], 16)
|
|
assert_array_equal(d[np.argpartition(d, 6, kind=k)],
|
|
np.partition(d, 6, kind=k))
|
|
assert_array_equal(d[np.argpartition(d, 16, kind=k)],
|
|
np.partition(d, 16, kind=k))
|
|
|
|
assert_array_equal(np.partition(d, -6, kind=k),
|
|
np.partition(d, 41, kind=k))
|
|
assert_array_equal(np.partition(d, -16, kind=k),
|
|
np.partition(d, 31, kind=k))
|
|
assert_array_equal(d[np.argpartition(d, -6, kind=k)],
|
|
np.partition(d, 41, kind=k))
|
|
|
|
# median of 3 killer, O(n^2) on pure median 3 pivot quickselect
|
|
# exercises the median of median of 5 code used to keep O(n)
|
|
d = np.arange(1000000)
|
|
x = np.roll(d, d.size // 2)
|
|
mid = x.size // 2 + 1
|
|
assert_equal(np.partition(x, mid)[mid], mid)
|
|
d = np.arange(1000001)
|
|
x = np.roll(d, d.size // 2 + 1)
|
|
mid = x.size // 2 + 1
|
|
assert_equal(np.partition(x, mid)[mid], mid)
|
|
|
|
# max
|
|
d = np.ones(10)
|
|
d[1] = 4
|
|
assert_equal(np.partition(d, (2, -1))[-1], 4)
|
|
assert_equal(np.partition(d, (2, -1))[2], 1)
|
|
assert_equal(d[np.argpartition(d, (2, -1))][-1], 4)
|
|
assert_equal(d[np.argpartition(d, (2, -1))][2], 1)
|
|
d[1] = np.nan
|
|
assert_(np.isnan(d[np.argpartition(d, (2, -1))][-1]))
|
|
assert_(np.isnan(np.partition(d, (2, -1))[-1]))
|
|
|
|
# equal elements
|
|
d = np.arange(47) % 7
|
|
tgt = np.sort(np.arange(47) % 7)
|
|
np.random.shuffle(d)
|
|
for i in range(d.size):
|
|
assert_equal(np.partition(d, i, kind=k)[i], tgt[i])
|
|
assert_array_equal(d[np.argpartition(d, 6, kind=k)],
|
|
np.partition(d, 6, kind=k))
|
|
assert_array_equal(d[np.argpartition(d, 16, kind=k)],
|
|
np.partition(d, 16, kind=k))
|
|
for i in range(d.size):
|
|
d[i:].partition(0, kind=k)
|
|
assert_array_equal(d, tgt)
|
|
|
|
d = np.array([0, 1, 2, 3, 4, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 9])
|
|
kth = [0, 3, 19, 20]
|
|
assert_equal(np.partition(d, kth, kind=k)[kth], (0, 3, 7, 7))
|
|
assert_equal(d[np.argpartition(d, kth, kind=k)][kth], (0, 3, 7, 7))
|
|
|
|
d = np.array([2, 1])
|
|
d.partition(0, kind=k)
|
|
assert_raises(ValueError, d.partition, 2)
|
|
assert_raises(np.AxisError, d.partition, 3, axis=1)
|
|
assert_raises(ValueError, np.partition, d, 2)
|
|
assert_raises(np.AxisError, np.partition, d, 2, axis=1)
|
|
assert_raises(ValueError, d.argpartition, 2)
|
|
assert_raises(np.AxisError, d.argpartition, 3, axis=1)
|
|
assert_raises(ValueError, np.argpartition, d, 2)
|
|
assert_raises(np.AxisError, np.argpartition, d, 2, axis=1)
|
|
d = np.arange(10).reshape((2, 5))
|
|
d.partition(1, axis=0, kind=k)
|
|
d.partition(4, axis=1, kind=k)
|
|
np.partition(d, 1, axis=0, kind=k)
|
|
np.partition(d, 4, axis=1, kind=k)
|
|
np.partition(d, 1, axis=None, kind=k)
|
|
np.partition(d, 9, axis=None, kind=k)
|
|
d.argpartition(1, axis=0, kind=k)
|
|
d.argpartition(4, axis=1, kind=k)
|
|
np.argpartition(d, 1, axis=0, kind=k)
|
|
np.argpartition(d, 4, axis=1, kind=k)
|
|
np.argpartition(d, 1, axis=None, kind=k)
|
|
np.argpartition(d, 9, axis=None, kind=k)
|
|
assert_raises(ValueError, d.partition, 2, axis=0)
|
|
assert_raises(ValueError, d.partition, 11, axis=1)
|
|
assert_raises(TypeError, d.partition, 2, axis=None)
|
|
assert_raises(ValueError, np.partition, d, 9, axis=1)
|
|
assert_raises(ValueError, np.partition, d, 11, axis=None)
|
|
assert_raises(ValueError, d.argpartition, 2, axis=0)
|
|
assert_raises(ValueError, d.argpartition, 11, axis=1)
|
|
assert_raises(ValueError, np.argpartition, d, 9, axis=1)
|
|
assert_raises(ValueError, np.argpartition, d, 11, axis=None)
|
|
|
|
td = [(dt, s) for dt in [np.int32, np.float32, np.complex64]
|
|
for s in (9, 16)]
|
|
for dt, s in td:
|
|
aae = assert_array_equal
|
|
at = assert_
|
|
|
|
d = np.arange(s, dtype=dt)
|
|
np.random.shuffle(d)
|
|
d1 = np.tile(np.arange(s, dtype=dt), (4, 1))
|
|
map(np.random.shuffle, d1)
|
|
d0 = np.transpose(d1)
|
|
for i in range(d.size):
|
|
p = np.partition(d, i, kind=k)
|
|
assert_equal(p[i], i)
|
|
# all before are smaller
|
|
assert_array_less(p[:i], p[i])
|
|
# all after are larger
|
|
assert_array_less(p[i], p[i + 1:])
|
|
aae(p, d[np.argpartition(d, i, kind=k)])
|
|
|
|
p = np.partition(d1, i, axis=1, kind=k)
|
|
aae(p[:, i], np.array([i] * d1.shape[0], dtype=dt))
|
|
# array_less does not seem to work right
|
|
at((p[:, :i].T <= p[:, i]).all(),
|
|
msg="%d: %r <= %r" % (i, p[:, i], p[:, :i].T))
|
|
at((p[:, i + 1:].T > p[:, i]).all(),
|
|
msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1:].T))
|
|
aae(p, d1[np.arange(d1.shape[0])[:, None],
|
|
np.argpartition(d1, i, axis=1, kind=k)])
|
|
|
|
p = np.partition(d0, i, axis=0, kind=k)
|
|
aae(p[i, :], np.array([i] * d1.shape[0], dtype=dt))
|
|
# array_less does not seem to work right
|
|
at((p[:i, :] <= p[i, :]).all(),
|
|
msg="%d: %r <= %r" % (i, p[i, :], p[:i, :]))
|
|
at((p[i + 1:, :] > p[i, :]).all(),
|
|
msg="%d: %r < %r" % (i, p[i, :], p[:, i + 1:]))
|
|
aae(p, d0[np.argpartition(d0, i, axis=0, kind=k),
|
|
np.arange(d0.shape[1])[None, :]])
|
|
|
|
# check inplace
|
|
dc = d.copy()
|
|
dc.partition(i, kind=k)
|
|
assert_equal(dc, np.partition(d, i, kind=k))
|
|
dc = d0.copy()
|
|
dc.partition(i, axis=0, kind=k)
|
|
assert_equal(dc, np.partition(d0, i, axis=0, kind=k))
|
|
dc = d1.copy()
|
|
dc.partition(i, axis=1, kind=k)
|
|
assert_equal(dc, np.partition(d1, i, axis=1, kind=k))
|
|
|
|
def assert_partitioned(self, d, kth):
|
|
prev = 0
|
|
for k in np.sort(kth):
|
|
assert_array_less(d[prev:k], d[k], err_msg='kth %d' % k)
|
|
assert_((d[k:] >= d[k]).all(),
|
|
msg="kth %d, %r not greater equal %d" % (k, d[k:], d[k]))
|
|
prev = k + 1
|
|
|
|
def test_partition_iterative(self):
|
|
d = np.arange(17)
|
|
kth = (0, 1, 2, 429, 231)
|
|
assert_raises(ValueError, d.partition, kth)
|
|
assert_raises(ValueError, d.argpartition, kth)
|
|
d = np.arange(10).reshape((2, 5))
|
|
assert_raises(ValueError, d.partition, kth, axis=0)
|
|
assert_raises(ValueError, d.partition, kth, axis=1)
|
|
assert_raises(ValueError, np.partition, d, kth, axis=1)
|
|
assert_raises(ValueError, np.partition, d, kth, axis=None)
|
|
|
|
d = np.array([3, 4, 2, 1])
|
|
p = np.partition(d, (0, 3))
|
|
self.assert_partitioned(p, (0, 3))
|
|
self.assert_partitioned(d[np.argpartition(d, (0, 3))], (0, 3))
|
|
|
|
assert_array_equal(p, np.partition(d, (-3, -1)))
|
|
assert_array_equal(p, d[np.argpartition(d, (-3, -1))])
|
|
|
|
d = np.arange(17)
|
|
np.random.shuffle(d)
|
|
d.partition(range(d.size))
|
|
assert_array_equal(np.arange(17), d)
|
|
np.random.shuffle(d)
|
|
assert_array_equal(np.arange(17), d[d.argpartition(range(d.size))])
|
|
|
|
# test unsorted kth
|
|
d = np.arange(17)
|
|
np.random.shuffle(d)
|
|
keys = np.array([1, 3, 8, -2])
|
|
np.random.shuffle(d)
|
|
p = np.partition(d, keys)
|
|
self.assert_partitioned(p, keys)
|
|
p = d[np.argpartition(d, keys)]
|
|
self.assert_partitioned(p, keys)
|
|
np.random.shuffle(keys)
|
|
assert_array_equal(np.partition(d, keys), p)
|
|
assert_array_equal(d[np.argpartition(d, keys)], p)
|
|
|
|
# equal kth
|
|
d = np.arange(20)[::-1]
|
|
self.assert_partitioned(np.partition(d, [5]*4), [5])
|
|
self.assert_partitioned(np.partition(d, [5]*4 + [6, 13]),
|
|
[5]*4 + [6, 13])
|
|
self.assert_partitioned(d[np.argpartition(d, [5]*4)], [5])
|
|
self.assert_partitioned(d[np.argpartition(d, [5]*4 + [6, 13])],
|
|
[5]*4 + [6, 13])
|
|
|
|
d = np.arange(12)
|
|
np.random.shuffle(d)
|
|
d1 = np.tile(np.arange(12), (4, 1))
|
|
map(np.random.shuffle, d1)
|
|
d0 = np.transpose(d1)
|
|
|
|
kth = (1, 6, 7, -1)
|
|
p = np.partition(d1, kth, axis=1)
|
|
pa = d1[np.arange(d1.shape[0])[:, None],
|
|
d1.argpartition(kth, axis=1)]
|
|
assert_array_equal(p, pa)
|
|
for i in range(d1.shape[0]):
|
|
self.assert_partitioned(p[i,:], kth)
|
|
p = np.partition(d0, kth, axis=0)
|
|
pa = d0[np.argpartition(d0, kth, axis=0),
|
|
np.arange(d0.shape[1])[None,:]]
|
|
assert_array_equal(p, pa)
|
|
for i in range(d0.shape[1]):
|
|
self.assert_partitioned(p[:, i], kth)
|
|
|
|
def test_partition_cdtype(self):
|
|
d = np.array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
|
|
('Lancelot', 1.9, 38)],
|
|
dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])
|
|
|
|
tgt = np.sort(d, order=['age', 'height'])
|
|
assert_array_equal(np.partition(d, range(d.size),
|
|
order=['age', 'height']),
|
|
tgt)
|
|
assert_array_equal(d[np.argpartition(d, range(d.size),
|
|
order=['age', 'height'])],
|
|
tgt)
|
|
for k in range(d.size):
|
|
assert_equal(np.partition(d, k, order=['age', 'height'])[k],
|
|
tgt[k])
|
|
assert_equal(d[np.argpartition(d, k, order=['age', 'height'])][k],
|
|
tgt[k])
|
|
|
|
d = np.array(['Galahad', 'Arthur', 'zebra', 'Lancelot'])
|
|
tgt = np.sort(d)
|
|
assert_array_equal(np.partition(d, range(d.size)), tgt)
|
|
for k in range(d.size):
|
|
assert_equal(np.partition(d, k)[k], tgt[k])
|
|
assert_equal(d[np.argpartition(d, k)][k], tgt[k])
|
|
|
|
def test_partition_unicode_kind(self):
|
|
d = np.arange(10)
|
|
k = b'\xc3\xa4'.decode("UTF8")
|
|
assert_raises(ValueError, d.partition, 2, kind=k)
|
|
assert_raises(ValueError, d.argpartition, 2, kind=k)
|
|
|
|
def test_partition_fuzz(self):
|
|
# a few rounds of random data testing
|
|
for j in range(10, 30):
|
|
for i in range(1, j - 2):
|
|
d = np.arange(j)
|
|
np.random.shuffle(d)
|
|
d = d % np.random.randint(2, 30)
|
|
idx = np.random.randint(d.size)
|
|
kth = [0, idx, i, i + 1]
|
|
tgt = np.sort(d)[kth]
|
|
assert_array_equal(np.partition(d, kth)[kth], tgt,
|
|
err_msg="data: %r\n kth: %r" % (d, kth))
|
|
|
|
def test_argpartition_gh5524(self):
|
|
# A test for functionality of argpartition on lists.
|
|
d = [6,7,3,2,9,0]
|
|
p = np.argpartition(d,1)
|
|
self.assert_partitioned(np.array(d)[p],[1])
|
|
|
|
def test_flatten(self):
|
|
x0 = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
|
|
x1 = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], np.int32)
|
|
y0 = np.array([1, 2, 3, 4, 5, 6], np.int32)
|
|
y0f = np.array([1, 4, 2, 5, 3, 6], np.int32)
|
|
y1 = np.array([1, 2, 3, 4, 5, 6, 7, 8], np.int32)
|
|
y1f = np.array([1, 5, 3, 7, 2, 6, 4, 8], np.int32)
|
|
assert_equal(x0.flatten(), y0)
|
|
assert_equal(x0.flatten('F'), y0f)
|
|
assert_equal(x0.flatten('F'), x0.T.flatten())
|
|
assert_equal(x1.flatten(), y1)
|
|
assert_equal(x1.flatten('F'), y1f)
|
|
assert_equal(x1.flatten('F'), x1.T.flatten())
|
|
|
|
|
|
@pytest.mark.parametrize('func', (np.dot, np.matmul))
|
|
def test_arr_mult(self, func):
|
|
a = np.array([[1, 0], [0, 1]])
|
|
b = np.array([[0, 1], [1, 0]])
|
|
c = np.array([[9, 1], [1, -9]])
|
|
d = np.arange(24).reshape(4, 6)
|
|
ddt = np.array(
|
|
[[ 55, 145, 235, 325],
|
|
[ 145, 451, 757, 1063],
|
|
[ 235, 757, 1279, 1801],
|
|
[ 325, 1063, 1801, 2539]]
|
|
)
|
|
dtd = np.array(
|
|
[[504, 540, 576, 612, 648, 684],
|
|
[540, 580, 620, 660, 700, 740],
|
|
[576, 620, 664, 708, 752, 796],
|
|
[612, 660, 708, 756, 804, 852],
|
|
[648, 700, 752, 804, 856, 908],
|
|
[684, 740, 796, 852, 908, 964]]
|
|
)
|
|
|
|
|
|
# gemm vs syrk optimizations
|
|
for et in [np.float32, np.float64, np.complex64, np.complex128]:
|
|
eaf = a.astype(et)
|
|
assert_equal(func(eaf, eaf), eaf)
|
|
assert_equal(func(eaf.T, eaf), eaf)
|
|
assert_equal(func(eaf, eaf.T), eaf)
|
|
assert_equal(func(eaf.T, eaf.T), eaf)
|
|
assert_equal(func(eaf.T.copy(), eaf), eaf)
|
|
assert_equal(func(eaf, eaf.T.copy()), eaf)
|
|
assert_equal(func(eaf.T.copy(), eaf.T.copy()), eaf)
|
|
|
|
# syrk validations
|
|
for et in [np.float32, np.float64, np.complex64, np.complex128]:
|
|
eaf = a.astype(et)
|
|
ebf = b.astype(et)
|
|
assert_equal(func(ebf, ebf), eaf)
|
|
assert_equal(func(ebf.T, ebf), eaf)
|
|
assert_equal(func(ebf, ebf.T), eaf)
|
|
assert_equal(func(ebf.T, ebf.T), eaf)
|
|
|
|
# syrk - different shape, stride, and view validations
|
|
for et in [np.float32, np.float64, np.complex64, np.complex128]:
|
|
edf = d.astype(et)
|
|
assert_equal(
|
|
func(edf[::-1, :], edf.T),
|
|
func(edf[::-1, :].copy(), edf.T.copy())
|
|
)
|
|
assert_equal(
|
|
func(edf[:, ::-1], edf.T),
|
|
func(edf[:, ::-1].copy(), edf.T.copy())
|
|
)
|
|
assert_equal(
|
|
func(edf, edf[::-1, :].T),
|
|
func(edf, edf[::-1, :].T.copy())
|
|
)
|
|
assert_equal(
|
|
func(edf, edf[:, ::-1].T),
|
|
func(edf, edf[:, ::-1].T.copy())
|
|
)
|
|
assert_equal(
|
|
func(edf[:edf.shape[0] // 2, :], edf[::2, :].T),
|
|
func(edf[:edf.shape[0] // 2, :].copy(), edf[::2, :].T.copy())
|
|
)
|
|
assert_equal(
|
|
func(edf[::2, :], edf[:edf.shape[0] // 2, :].T),
|
|
func(edf[::2, :].copy(), edf[:edf.shape[0] // 2, :].T.copy())
|
|
)
|
|
|
|
# syrk - different shape
|
|
for et in [np.float32, np.float64, np.complex64, np.complex128]:
|
|
edf = d.astype(et)
|
|
eddtf = ddt.astype(et)
|
|
edtdf = dtd.astype(et)
|
|
assert_equal(func(edf, edf.T), eddtf)
|
|
assert_equal(func(edf.T, edf), edtdf)
|
|
|
|
@pytest.mark.parametrize('func', (np.dot, np.matmul))
|
|
@pytest.mark.parametrize('dtype', 'ifdFD')
|
|
def test_no_dgemv(self, func, dtype):
|
|
# check vector arg for contiguous before gemv
|
|
# gh-12156
|
|
a = np.arange(8.0, dtype=dtype).reshape(2, 4)
|
|
b = np.broadcast_to(1., (4, 1))
|
|
ret1 = func(a, b)
|
|
ret2 = func(a, b.copy())
|
|
assert_equal(ret1, ret2)
|
|
|
|
ret1 = func(b.T, a.T)
|
|
ret2 = func(b.T.copy(), a.T)
|
|
assert_equal(ret1, ret2)
|
|
|
|
# check for unaligned data
|
|
dt = np.dtype(dtype)
|
|
a = np.zeros(8 * dt.itemsize // 2 + 1, dtype='int16')[1:].view(dtype)
|
|
a = a.reshape(2, 4)
|
|
b = a[0]
|
|
# make sure it is not aligned
|
|
assert_(a.__array_interface__['data'][0] % dt.itemsize != 0)
|
|
ret1 = func(a, b)
|
|
ret2 = func(a.copy(), b.copy())
|
|
assert_equal(ret1, ret2)
|
|
|
|
ret1 = func(b.T, a.T)
|
|
ret2 = func(b.T.copy(), a.T.copy())
|
|
assert_equal(ret1, ret2)
|
|
|
|
def test_dot(self):
|
|
a = np.array([[1, 0], [0, 1]])
|
|
b = np.array([[0, 1], [1, 0]])
|
|
c = np.array([[9, 1], [1, -9]])
|
|
# function versus methods
|
|
assert_equal(np.dot(a, b), a.dot(b))
|
|
assert_equal(np.dot(np.dot(a, b), c), a.dot(b).dot(c))
|
|
|
|
# test passing in an output array
|
|
c = np.zeros_like(a)
|
|
a.dot(b, c)
|
|
assert_equal(c, np.dot(a, b))
|
|
|
|
# test keyword args
|
|
c = np.zeros_like(a)
|
|
a.dot(b=b, out=c)
|
|
assert_equal(c, np.dot(a, b))
|
|
|
|
def test_dot_type_mismatch(self):
|
|
c = 1.
|
|
A = np.array((1,1), dtype='i,i')
|
|
|
|
assert_raises(TypeError, np.dot, c, A)
|
|
assert_raises(TypeError, np.dot, A, c)
|
|
|
|
def test_dot_out_mem_overlap(self):
|
|
np.random.seed(1)
|
|
|
|
# Test BLAS and non-BLAS code paths, including all dtypes
|
|
# that dot() supports
|
|
dtypes = [np.dtype(code) for code in np.typecodes['All']
|
|
if code not in 'USVM']
|
|
for dtype in dtypes:
|
|
a = np.random.rand(3, 3).astype(dtype)
|
|
|
|
# Valid dot() output arrays must be aligned
|
|
b = _aligned_zeros((3, 3), dtype=dtype)
|
|
b[...] = np.random.rand(3, 3)
|
|
|
|
y = np.dot(a, b)
|
|
x = np.dot(a, b, out=b)
|
|
assert_equal(x, y, err_msg=repr(dtype))
|
|
|
|
# Check invalid output array
|
|
assert_raises(ValueError, np.dot, a, b, out=b[::2])
|
|
assert_raises(ValueError, np.dot, a, b, out=b.T)
|
|
|
|
def test_dot_matmul_out(self):
|
|
# gh-9641
|
|
class Sub(np.ndarray):
|
|
pass
|
|
a = np.ones((2, 2)).view(Sub)
|
|
b = np.ones((2, 2)).view(Sub)
|
|
out = np.ones((2, 2))
|
|
|
|
# make sure out can be any ndarray (not only subclass of inputs)
|
|
np.dot(a, b, out=out)
|
|
np.matmul(a, b, out=out)
|
|
|
|
def test_dot_matmul_inner_array_casting_fails(self):
|
|
|
|
class A:
|
|
def __array__(self, *args, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
# Don't override the error from calling __array__()
|
|
assert_raises(NotImplementedError, np.dot, A(), A())
|
|
assert_raises(NotImplementedError, np.matmul, A(), A())
|
|
assert_raises(NotImplementedError, np.inner, A(), A())
|
|
|
|
def test_matmul_out(self):
|
|
# overlapping memory
|
|
a = np.arange(18).reshape(2, 3, 3)
|
|
b = np.matmul(a, a)
|
|
c = np.matmul(a, a, out=a)
|
|
assert_(c is a)
|
|
assert_equal(c, b)
|
|
a = np.arange(18).reshape(2, 3, 3)
|
|
c = np.matmul(a, a, out=a[::-1, ...])
|
|
assert_(c.base is a.base)
|
|
assert_equal(c, b)
|
|
|
|
def test_diagonal(self):
|
|
a = np.arange(12).reshape((3, 4))
|
|
assert_equal(a.diagonal(), [0, 5, 10])
|
|
assert_equal(a.diagonal(0), [0, 5, 10])
|
|
assert_equal(a.diagonal(1), [1, 6, 11])
|
|
assert_equal(a.diagonal(-1), [4, 9])
|
|
assert_raises(np.AxisError, a.diagonal, axis1=0, axis2=5)
|
|
assert_raises(np.AxisError, a.diagonal, axis1=5, axis2=0)
|
|
assert_raises(np.AxisError, a.diagonal, axis1=5, axis2=5)
|
|
assert_raises(ValueError, a.diagonal, axis1=1, axis2=1)
|
|
|
|
b = np.arange(8).reshape((2, 2, 2))
|
|
assert_equal(b.diagonal(), [[0, 6], [1, 7]])
|
|
assert_equal(b.diagonal(0), [[0, 6], [1, 7]])
|
|
assert_equal(b.diagonal(1), [[2], [3]])
|
|
assert_equal(b.diagonal(-1), [[4], [5]])
|
|
assert_raises(ValueError, b.diagonal, axis1=0, axis2=0)
|
|
assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]])
|
|
assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]])
|
|
assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]])
|
|
# Order of axis argument doesn't matter:
|
|
assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]])
|
|
|
|
def test_diagonal_view_notwriteable(self):
|
|
a = np.eye(3).diagonal()
|
|
assert_(not a.flags.writeable)
|
|
assert_(not a.flags.owndata)
|
|
|
|
a = np.diagonal(np.eye(3))
|
|
assert_(not a.flags.writeable)
|
|
assert_(not a.flags.owndata)
|
|
|
|
a = np.diag(np.eye(3))
|
|
assert_(not a.flags.writeable)
|
|
assert_(not a.flags.owndata)
|
|
|
|
def test_diagonal_memleak(self):
|
|
# Regression test for a bug that crept in at one point
|
|
a = np.zeros((100, 100))
|
|
if HAS_REFCOUNT:
|
|
assert_(sys.getrefcount(a) < 50)
|
|
for i in range(100):
|
|
a.diagonal()
|
|
if HAS_REFCOUNT:
|
|
assert_(sys.getrefcount(a) < 50)
|
|
|
|
def test_size_zero_memleak(self):
|
|
# Regression test for issue 9615
|
|
# Exercises a special-case code path for dot products of length
|
|
# zero in cblasfuncs (making it is specific to floating dtypes).
|
|
a = np.array([], dtype=np.float64)
|
|
x = np.array(2.0)
|
|
for _ in range(100):
|
|
np.dot(a, a, out=x)
|
|
if HAS_REFCOUNT:
|
|
assert_(sys.getrefcount(x) < 50)
|
|
|
|
def test_trace(self):
|
|
a = np.arange(12).reshape((3, 4))
|
|
assert_equal(a.trace(), 15)
|
|
assert_equal(a.trace(0), 15)
|
|
assert_equal(a.trace(1), 18)
|
|
assert_equal(a.trace(-1), 13)
|
|
|
|
b = np.arange(8).reshape((2, 2, 2))
|
|
assert_equal(b.trace(), [6, 8])
|
|
assert_equal(b.trace(0), [6, 8])
|
|
assert_equal(b.trace(1), [2, 3])
|
|
assert_equal(b.trace(-1), [4, 5])
|
|
assert_equal(b.trace(0, 0, 1), [6, 8])
|
|
assert_equal(b.trace(0, 0, 2), [5, 9])
|
|
assert_equal(b.trace(0, 1, 2), [3, 11])
|
|
assert_equal(b.trace(offset=1, axis1=0, axis2=2), [1, 3])
|
|
|
|
def test_trace_subclass(self):
|
|
# The class would need to overwrite trace to ensure single-element
|
|
# output also has the right subclass.
|
|
class MyArray(np.ndarray):
|
|
pass
|
|
|
|
b = np.arange(8).reshape((2, 2, 2)).view(MyArray)
|
|
t = b.trace()
|
|
assert_(isinstance(t, MyArray))
|
|
|
|
def test_put(self):
|
|
icodes = np.typecodes['AllInteger']
|
|
fcodes = np.typecodes['AllFloat']
|
|
for dt in icodes + fcodes + 'O':
|
|
tgt = np.array([0, 1, 0, 3, 0, 5], dtype=dt)
|
|
|
|
# test 1-d
|
|
a = np.zeros(6, dtype=dt)
|
|
a.put([1, 3, 5], [1, 3, 5])
|
|
assert_equal(a, tgt)
|
|
|
|
# test 2-d
|
|
a = np.zeros((2, 3), dtype=dt)
|
|
a.put([1, 3, 5], [1, 3, 5])
|
|
assert_equal(a, tgt.reshape(2, 3))
|
|
|
|
for dt in '?':
|
|
tgt = np.array([False, True, False, True, False, True], dtype=dt)
|
|
|
|
# test 1-d
|
|
a = np.zeros(6, dtype=dt)
|
|
a.put([1, 3, 5], [True]*3)
|
|
assert_equal(a, tgt)
|
|
|
|
# test 2-d
|
|
a = np.zeros((2, 3), dtype=dt)
|
|
a.put([1, 3, 5], [True]*3)
|
|
assert_equal(a, tgt.reshape(2, 3))
|
|
|
|
# check must be writeable
|
|
a = np.zeros(6)
|
|
a.flags.writeable = False
|
|
assert_raises(ValueError, a.put, [1, 3, 5], [1, 3, 5])
|
|
|
|
# when calling np.put, make sure a
|
|
# TypeError is raised if the object
|
|
# isn't an ndarray
|
|
bad_array = [1, 2, 3]
|
|
assert_raises(TypeError, np.put, bad_array, [0, 2], 5)
|
|
|
|
def test_ravel(self):
|
|
a = np.array([[0, 1], [2, 3]])
|
|
assert_equal(a.ravel(), [0, 1, 2, 3])
|
|
assert_(not a.ravel().flags.owndata)
|
|
assert_equal(a.ravel('F'), [0, 2, 1, 3])
|
|
assert_equal(a.ravel(order='C'), [0, 1, 2, 3])
|
|
assert_equal(a.ravel(order='F'), [0, 2, 1, 3])
|
|
assert_equal(a.ravel(order='A'), [0, 1, 2, 3])
|
|
assert_(not a.ravel(order='A').flags.owndata)
|
|
assert_equal(a.ravel(order='K'), [0, 1, 2, 3])
|
|
assert_(not a.ravel(order='K').flags.owndata)
|
|
assert_equal(a.ravel(), a.reshape(-1))
|
|
|
|
a = np.array([[0, 1], [2, 3]], order='F')
|
|
assert_equal(a.ravel(), [0, 1, 2, 3])
|
|
assert_equal(a.ravel(order='A'), [0, 2, 1, 3])
|
|
assert_equal(a.ravel(order='K'), [0, 2, 1, 3])
|
|
assert_(not a.ravel(order='A').flags.owndata)
|
|
assert_(not a.ravel(order='K').flags.owndata)
|
|
assert_equal(a.ravel(), a.reshape(-1))
|
|
assert_equal(a.ravel(order='A'), a.reshape(-1, order='A'))
|
|
|
|
a = np.array([[0, 1], [2, 3]])[::-1, :]
|
|
assert_equal(a.ravel(), [2, 3, 0, 1])
|
|
assert_equal(a.ravel(order='C'), [2, 3, 0, 1])
|
|
assert_equal(a.ravel(order='F'), [2, 0, 3, 1])
|
|
assert_equal(a.ravel(order='A'), [2, 3, 0, 1])
|
|
# 'K' doesn't reverse the axes of negative strides
|
|
assert_equal(a.ravel(order='K'), [2, 3, 0, 1])
|
|
assert_(a.ravel(order='K').flags.owndata)
|
|
|
|
# Test simple 1-d copy behaviour:
|
|
a = np.arange(10)[::2]
|
|
assert_(a.ravel('K').flags.owndata)
|
|
assert_(a.ravel('C').flags.owndata)
|
|
assert_(a.ravel('F').flags.owndata)
|
|
|
|
# Not contiguous and 1-sized axis with non matching stride
|
|
a = np.arange(2**3 * 2)[::2]
|
|
a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2)
|
|
strides = list(a.strides)
|
|
strides[1] = 123
|
|
a.strides = strides
|
|
assert_(a.ravel(order='K').flags.owndata)
|
|
assert_equal(a.ravel('K'), np.arange(0, 15, 2))
|
|
|
|
# contiguous and 1-sized axis with non matching stride works:
|
|
a = np.arange(2**3)
|
|
a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2)
|
|
strides = list(a.strides)
|
|
strides[1] = 123
|
|
a.strides = strides
|
|
assert_(np.may_share_memory(a.ravel(order='K'), a))
|
|
assert_equal(a.ravel(order='K'), np.arange(2**3))
|
|
|
|
# Test negative strides (not very interesting since non-contiguous):
|
|
a = np.arange(4)[::-1].reshape(2, 2)
|
|
assert_(a.ravel(order='C').flags.owndata)
|
|
assert_(a.ravel(order='K').flags.owndata)
|
|
assert_equal(a.ravel('C'), [3, 2, 1, 0])
|
|
assert_equal(a.ravel('K'), [3, 2, 1, 0])
|
|
|
|
# 1-element tidy strides test (NPY_RELAXED_STRIDES_CHECKING):
|
|
a = np.array([[1]])
|
|
a.strides = (123, 432)
|
|
# If the stride is not 8, NPY_RELAXED_STRIDES_CHECKING is messing
|
|
# them up on purpose:
|
|
if np.ones(1).strides == (8,):
|
|
assert_(np.may_share_memory(a.ravel('K'), a))
|
|
assert_equal(a.ravel('K').strides, (a.dtype.itemsize,))
|
|
|
|
for order in ('C', 'F', 'A', 'K'):
|
|
# 0-d corner case:
|
|
a = np.array(0)
|
|
assert_equal(a.ravel(order), [0])
|
|
assert_(np.may_share_memory(a.ravel(order), a))
|
|
|
|
# Test that certain non-inplace ravels work right (mostly) for 'K':
|
|
b = np.arange(2**4 * 2)[::2].reshape(2, 2, 2, 2)
|
|
a = b[..., ::2]
|
|
assert_equal(a.ravel('K'), [0, 4, 8, 12, 16, 20, 24, 28])
|
|
assert_equal(a.ravel('C'), [0, 4, 8, 12, 16, 20, 24, 28])
|
|
assert_equal(a.ravel('A'), [0, 4, 8, 12, 16, 20, 24, 28])
|
|
assert_equal(a.ravel('F'), [0, 16, 8, 24, 4, 20, 12, 28])
|
|
|
|
a = b[::2, ...]
|
|
assert_equal(a.ravel('K'), [0, 2, 4, 6, 8, 10, 12, 14])
|
|
assert_equal(a.ravel('C'), [0, 2, 4, 6, 8, 10, 12, 14])
|
|
assert_equal(a.ravel('A'), [0, 2, 4, 6, 8, 10, 12, 14])
|
|
assert_equal(a.ravel('F'), [0, 8, 4, 12, 2, 10, 6, 14])
|
|
|
|
def test_ravel_subclass(self):
|
|
class ArraySubclass(np.ndarray):
|
|
pass
|
|
|
|
a = np.arange(10).view(ArraySubclass)
|
|
assert_(isinstance(a.ravel('C'), ArraySubclass))
|
|
assert_(isinstance(a.ravel('F'), ArraySubclass))
|
|
assert_(isinstance(a.ravel('A'), ArraySubclass))
|
|
assert_(isinstance(a.ravel('K'), ArraySubclass))
|
|
|
|
a = np.arange(10)[::2].view(ArraySubclass)
|
|
assert_(isinstance(a.ravel('C'), ArraySubclass))
|
|
assert_(isinstance(a.ravel('F'), ArraySubclass))
|
|
assert_(isinstance(a.ravel('A'), ArraySubclass))
|
|
assert_(isinstance(a.ravel('K'), ArraySubclass))
|
|
|
|
def test_swapaxes(self):
|
|
a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy()
|
|
idx = np.indices(a.shape)
|
|
assert_(a.flags['OWNDATA'])
|
|
b = a.copy()
|
|
# check exceptions
|
|
assert_raises(np.AxisError, a.swapaxes, -5, 0)
|
|
assert_raises(np.AxisError, a.swapaxes, 4, 0)
|
|
assert_raises(np.AxisError, a.swapaxes, 0, -5)
|
|
assert_raises(np.AxisError, a.swapaxes, 0, 4)
|
|
|
|
for i in range(-4, 4):
|
|
for j in range(-4, 4):
|
|
for k, src in enumerate((a, b)):
|
|
c = src.swapaxes(i, j)
|
|
# check shape
|
|
shape = list(src.shape)
|
|
shape[i] = src.shape[j]
|
|
shape[j] = src.shape[i]
|
|
assert_equal(c.shape, shape, str((i, j, k)))
|
|
# check array contents
|
|
i0, i1, i2, i3 = [dim-1 for dim in c.shape]
|
|
j0, j1, j2, j3 = [dim-1 for dim in src.shape]
|
|
assert_equal(src[idx[j0], idx[j1], idx[j2], idx[j3]],
|
|
c[idx[i0], idx[i1], idx[i2], idx[i3]],
|
|
str((i, j, k)))
|
|
# check a view is always returned, gh-5260
|
|
assert_(not c.flags['OWNDATA'], str((i, j, k)))
|
|
# check on non-contiguous input array
|
|
if k == 1:
|
|
b = c
|
|
|
|
def test_conjugate(self):
|
|
a = np.array([1-1j, 1+1j, 23+23.0j])
|
|
ac = a.conj()
|
|
assert_equal(a.real, ac.real)
|
|
assert_equal(a.imag, -ac.imag)
|
|
assert_equal(ac, a.conjugate())
|
|
assert_equal(ac, np.conjugate(a))
|
|
|
|
a = np.array([1-1j, 1+1j, 23+23.0j], 'F')
|
|
ac = a.conj()
|
|
assert_equal(a.real, ac.real)
|
|
assert_equal(a.imag, -ac.imag)
|
|
assert_equal(ac, a.conjugate())
|
|
assert_equal(ac, np.conjugate(a))
|
|
|
|
a = np.array([1, 2, 3])
|
|
ac = a.conj()
|
|
assert_equal(a, ac)
|
|
assert_equal(ac, a.conjugate())
|
|
assert_equal(ac, np.conjugate(a))
|
|
|
|
a = np.array([1.0, 2.0, 3.0])
|
|
ac = a.conj()
|
|
assert_equal(a, ac)
|
|
assert_equal(ac, a.conjugate())
|
|
assert_equal(ac, np.conjugate(a))
|
|
|
|
a = np.array([1-1j, 1+1j, 1, 2.0], object)
|
|
ac = a.conj()
|
|
assert_equal(ac, [k.conjugate() for k in a])
|
|
assert_equal(ac, a.conjugate())
|
|
assert_equal(ac, np.conjugate(a))
|
|
|
|
a = np.array([1-1j, 1, 2.0, 'f'], object)
|
|
assert_raises(TypeError, lambda: a.conj())
|
|
assert_raises(TypeError, lambda: a.conjugate())
|
|
|
|
def test__complex__(self):
|
|
dtypes = ['i1', 'i2', 'i4', 'i8',
|
|
'u1', 'u2', 'u4', 'u8',
|
|
'f', 'd', 'g', 'F', 'D', 'G',
|
|
'?', 'O']
|
|
for dt in dtypes:
|
|
a = np.array(7, dtype=dt)
|
|
b = np.array([7], dtype=dt)
|
|
c = np.array([[[[[7]]]]], dtype=dt)
|
|
|
|
msg = 'dtype: {0}'.format(dt)
|
|
ap = complex(a)
|
|
assert_equal(ap, a, msg)
|
|
bp = complex(b)
|
|
assert_equal(bp, b, msg)
|
|
cp = complex(c)
|
|
assert_equal(cp, c, msg)
|
|
|
|
def test__complex__should_not_work(self):
|
|
dtypes = ['i1', 'i2', 'i4', 'i8',
|
|
'u1', 'u2', 'u4', 'u8',
|
|
'f', 'd', 'g', 'F', 'D', 'G',
|
|
'?', 'O']
|
|
for dt in dtypes:
|
|
a = np.array([1, 2, 3], dtype=dt)
|
|
assert_raises(TypeError, complex, a)
|
|
|
|
dt = np.dtype([('a', 'f8'), ('b', 'i1')])
|
|
b = np.array((1.0, 3), dtype=dt)
|
|
assert_raises(TypeError, complex, b)
|
|
|
|
c = np.array([(1.0, 3), (2e-3, 7)], dtype=dt)
|
|
assert_raises(TypeError, complex, c)
|
|
|
|
d = np.array('1+1j')
|
|
assert_raises(TypeError, complex, d)
|
|
|
|
e = np.array(['1+1j'], 'U')
|
|
assert_raises(TypeError, complex, e)
|
|
|
|
class TestCequenceMethods:
|
|
def test_array_contains(self):
|
|
assert_(4.0 in np.arange(16.).reshape(4,4))
|
|
assert_(20.0 not in np.arange(16.).reshape(4,4))
|
|
|
|
class TestBinop:
|
|
def test_inplace(self):
|
|
# test refcount 1 inplace conversion
|
|
assert_array_almost_equal(np.array([0.5]) * np.array([1.0, 2.0]),
|
|
[0.5, 1.0])
|
|
|
|
d = np.array([0.5, 0.5])[::2]
|
|
assert_array_almost_equal(d * (d * np.array([1.0, 2.0])),
|
|
[0.25, 0.5])
|
|
|
|
a = np.array([0.5])
|
|
b = np.array([0.5])
|
|
c = a + b
|
|
c = a - b
|
|
c = a * b
|
|
c = a / b
|
|
assert_equal(a, b)
|
|
assert_almost_equal(c, 1.)
|
|
|
|
c = a + b * 2. / b * a - a / b
|
|
assert_equal(a, b)
|
|
assert_equal(c, 0.5)
|
|
|
|
# true divide
|
|
a = np.array([5])
|
|
b = np.array([3])
|
|
c = (a * a) / b
|
|
|
|
assert_almost_equal(c, 25 / 3)
|
|
assert_equal(a, 5)
|
|
assert_equal(b, 3)
|
|
|
|
# ndarray.__rop__ always calls ufunc
|
|
# ndarray.__iop__ always calls ufunc
|
|
# ndarray.__op__, __rop__:
|
|
# - defer if other has __array_ufunc__ and it is None
|
|
# or other is not a subclass and has higher array priority
|
|
# - else, call ufunc
|
|
def test_ufunc_binop_interaction(self):
|
|
# Python method name (without underscores)
|
|
# -> (numpy ufunc, has_in_place_version, preferred_dtype)
|
|
ops = {
|
|
'add': (np.add, True, float),
|
|
'sub': (np.subtract, True, float),
|
|
'mul': (np.multiply, True, float),
|
|
'truediv': (np.true_divide, True, float),
|
|
'floordiv': (np.floor_divide, True, float),
|
|
'mod': (np.remainder, True, float),
|
|
'divmod': (np.divmod, False, float),
|
|
'pow': (np.power, True, int),
|
|
'lshift': (np.left_shift, True, int),
|
|
'rshift': (np.right_shift, True, int),
|
|
'and': (np.bitwise_and, True, int),
|
|
'xor': (np.bitwise_xor, True, int),
|
|
'or': (np.bitwise_or, True, int),
|
|
'matmul': (np.matmul, False, float),
|
|
# 'ge': (np.less_equal, False),
|
|
# 'gt': (np.less, False),
|
|
# 'le': (np.greater_equal, False),
|
|
# 'lt': (np.greater, False),
|
|
# 'eq': (np.equal, False),
|
|
# 'ne': (np.not_equal, False),
|
|
}
|
|
|
|
class Coerced(Exception):
|
|
pass
|
|
|
|
def array_impl(self):
|
|
raise Coerced
|
|
|
|
def op_impl(self, other):
|
|
return "forward"
|
|
|
|
def rop_impl(self, other):
|
|
return "reverse"
|
|
|
|
def iop_impl(self, other):
|
|
return "in-place"
|
|
|
|
def array_ufunc_impl(self, ufunc, method, *args, **kwargs):
|
|
return ("__array_ufunc__", ufunc, method, args, kwargs)
|
|
|
|
# Create an object with the given base, in the given module, with a
|
|
# bunch of placeholder __op__ methods, and optionally a
|
|
# __array_ufunc__ and __array_priority__.
|
|
def make_obj(base, array_priority=False, array_ufunc=False,
|
|
alleged_module="__main__"):
|
|
class_namespace = {"__array__": array_impl}
|
|
if array_priority is not False:
|
|
class_namespace["__array_priority__"] = array_priority
|
|
for op in ops:
|
|
class_namespace["__{0}__".format(op)] = op_impl
|
|
class_namespace["__r{0}__".format(op)] = rop_impl
|
|
class_namespace["__i{0}__".format(op)] = iop_impl
|
|
if array_ufunc is not False:
|
|
class_namespace["__array_ufunc__"] = array_ufunc
|
|
eval_namespace = {"base": base,
|
|
"class_namespace": class_namespace,
|
|
"__name__": alleged_module,
|
|
}
|
|
MyType = eval("type('MyType', (base,), class_namespace)",
|
|
eval_namespace)
|
|
if issubclass(MyType, np.ndarray):
|
|
# Use this range to avoid special case weirdnesses around
|
|
# divide-by-0, pow(x, 2), overflow due to pow(big, big), etc.
|
|
return np.arange(3, 7).reshape(2, 2).view(MyType)
|
|
else:
|
|
return MyType()
|
|
|
|
def check(obj, binop_override_expected, ufunc_override_expected,
|
|
inplace_override_expected, check_scalar=True):
|
|
for op, (ufunc, has_inplace, dtype) in ops.items():
|
|
err_msg = ('op: %s, ufunc: %s, has_inplace: %s, dtype: %s'
|
|
% (op, ufunc, has_inplace, dtype))
|
|
check_objs = [np.arange(3, 7, dtype=dtype).reshape(2, 2)]
|
|
if check_scalar:
|
|
check_objs.append(check_objs[0][0])
|
|
for arr in check_objs:
|
|
arr_method = getattr(arr, "__{0}__".format(op))
|
|
|
|
def first_out_arg(result):
|
|
if op == "divmod":
|
|
assert_(isinstance(result, tuple))
|
|
return result[0]
|
|
else:
|
|
return result
|
|
|
|
# arr __op__ obj
|
|
if binop_override_expected:
|
|
assert_equal(arr_method(obj), NotImplemented, err_msg)
|
|
elif ufunc_override_expected:
|
|
assert_equal(arr_method(obj)[0], "__array_ufunc__",
|
|
err_msg)
|
|
else:
|
|
if (isinstance(obj, np.ndarray) and
|
|
(type(obj).__array_ufunc__ is
|
|
np.ndarray.__array_ufunc__)):
|
|
# __array__ gets ignored
|
|
res = first_out_arg(arr_method(obj))
|
|
assert_(res.__class__ is obj.__class__, err_msg)
|
|
else:
|
|
assert_raises((TypeError, Coerced),
|
|
arr_method, obj, err_msg=err_msg)
|
|
# obj __op__ arr
|
|
arr_rmethod = getattr(arr, "__r{0}__".format(op))
|
|
if ufunc_override_expected:
|
|
res = arr_rmethod(obj)
|
|
assert_equal(res[0], "__array_ufunc__",
|
|
err_msg=err_msg)
|
|
assert_equal(res[1], ufunc, err_msg=err_msg)
|
|
else:
|
|
if (isinstance(obj, np.ndarray) and
|
|
(type(obj).__array_ufunc__ is
|
|
np.ndarray.__array_ufunc__)):
|
|
# __array__ gets ignored
|
|
res = first_out_arg(arr_rmethod(obj))
|
|
assert_(res.__class__ is obj.__class__, err_msg)
|
|
else:
|
|
# __array_ufunc__ = "asdf" creates a TypeError
|
|
assert_raises((TypeError, Coerced),
|
|
arr_rmethod, obj, err_msg=err_msg)
|
|
|
|
# arr __iop__ obj
|
|
# array scalars don't have in-place operators
|
|
if has_inplace and isinstance(arr, np.ndarray):
|
|
arr_imethod = getattr(arr, "__i{0}__".format(op))
|
|
if inplace_override_expected:
|
|
assert_equal(arr_method(obj), NotImplemented,
|
|
err_msg=err_msg)
|
|
elif ufunc_override_expected:
|
|
res = arr_imethod(obj)
|
|
assert_equal(res[0], "__array_ufunc__", err_msg)
|
|
assert_equal(res[1], ufunc, err_msg)
|
|
assert_(type(res[-1]["out"]) is tuple, err_msg)
|
|
assert_(res[-1]["out"][0] is arr, err_msg)
|
|
else:
|
|
if (isinstance(obj, np.ndarray) and
|
|
(type(obj).__array_ufunc__ is
|
|
np.ndarray.__array_ufunc__)):
|
|
# __array__ gets ignored
|
|
assert_(arr_imethod(obj) is arr, err_msg)
|
|
else:
|
|
assert_raises((TypeError, Coerced),
|
|
arr_imethod, obj,
|
|
err_msg=err_msg)
|
|
|
|
op_fn = getattr(operator, op, None)
|
|
if op_fn is None:
|
|
op_fn = getattr(operator, op + "_", None)
|
|
if op_fn is None:
|
|
op_fn = getattr(builtins, op)
|
|
assert_equal(op_fn(obj, arr), "forward", err_msg)
|
|
if not isinstance(obj, np.ndarray):
|
|
if binop_override_expected:
|
|
assert_equal(op_fn(arr, obj), "reverse", err_msg)
|
|
elif ufunc_override_expected:
|
|
assert_equal(op_fn(arr, obj)[0], "__array_ufunc__",
|
|
err_msg)
|
|
if ufunc_override_expected:
|
|
assert_equal(ufunc(obj, arr)[0], "__array_ufunc__",
|
|
err_msg)
|
|
|
|
# No array priority, no array_ufunc -> nothing called
|
|
check(make_obj(object), False, False, False)
|
|
# Negative array priority, no array_ufunc -> nothing called
|
|
# (has to be very negative, because scalar priority is -1000000.0)
|
|
check(make_obj(object, array_priority=-2**30), False, False, False)
|
|
# Positive array priority, no array_ufunc -> binops and iops only
|
|
check(make_obj(object, array_priority=1), True, False, True)
|
|
# ndarray ignores array_priority for ndarray subclasses
|
|
check(make_obj(np.ndarray, array_priority=1), False, False, False,
|
|
check_scalar=False)
|
|
# Positive array_priority and array_ufunc -> array_ufunc only
|
|
check(make_obj(object, array_priority=1,
|
|
array_ufunc=array_ufunc_impl), False, True, False)
|
|
check(make_obj(np.ndarray, array_priority=1,
|
|
array_ufunc=array_ufunc_impl), False, True, False)
|
|
# array_ufunc set to None -> defer binops only
|
|
check(make_obj(object, array_ufunc=None), True, False, False)
|
|
check(make_obj(np.ndarray, array_ufunc=None), True, False, False,
|
|
check_scalar=False)
|
|
|
|
def test_ufunc_override_normalize_signature(self):
|
|
# gh-5674
|
|
class SomeClass:
|
|
def __array_ufunc__(self, ufunc, method, *inputs, **kw):
|
|
return kw
|
|
|
|
a = SomeClass()
|
|
kw = np.add(a, [1])
|
|
assert_('sig' not in kw and 'signature' not in kw)
|
|
kw = np.add(a, [1], sig='ii->i')
|
|
assert_('sig' not in kw and 'signature' in kw)
|
|
assert_equal(kw['signature'], 'ii->i')
|
|
kw = np.add(a, [1], signature='ii->i')
|
|
assert_('sig' not in kw and 'signature' in kw)
|
|
assert_equal(kw['signature'], 'ii->i')
|
|
|
|
def test_array_ufunc_index(self):
|
|
# Check that index is set appropriately, also if only an output
|
|
# is passed on (latter is another regression tests for github bug 4753)
|
|
# This also checks implicitly that 'out' is always a tuple.
|
|
class CheckIndex:
|
|
def __array_ufunc__(self, ufunc, method, *inputs, **kw):
|
|
for i, a in enumerate(inputs):
|
|
if a is self:
|
|
return i
|
|
# calls below mean we must be in an output.
|
|
for j, a in enumerate(kw['out']):
|
|
if a is self:
|
|
return (j,)
|
|
|
|
a = CheckIndex()
|
|
dummy = np.arange(2.)
|
|
# 1 input, 1 output
|
|
assert_equal(np.sin(a), 0)
|
|
assert_equal(np.sin(dummy, a), (0,))
|
|
assert_equal(np.sin(dummy, out=a), (0,))
|
|
assert_equal(np.sin(dummy, out=(a,)), (0,))
|
|
assert_equal(np.sin(a, a), 0)
|
|
assert_equal(np.sin(a, out=a), 0)
|
|
assert_equal(np.sin(a, out=(a,)), 0)
|
|
# 1 input, 2 outputs
|
|
assert_equal(np.modf(dummy, a), (0,))
|
|
assert_equal(np.modf(dummy, None, a), (1,))
|
|
assert_equal(np.modf(dummy, dummy, a), (1,))
|
|
assert_equal(np.modf(dummy, out=(a, None)), (0,))
|
|
assert_equal(np.modf(dummy, out=(a, dummy)), (0,))
|
|
assert_equal(np.modf(dummy, out=(None, a)), (1,))
|
|
assert_equal(np.modf(dummy, out=(dummy, a)), (1,))
|
|
assert_equal(np.modf(a, out=(dummy, a)), 0)
|
|
with assert_raises(TypeError):
|
|
# Out argument must be tuple, since there are multiple outputs
|
|
np.modf(dummy, out=a)
|
|
|
|
assert_raises(ValueError, np.modf, dummy, out=(a,))
|
|
|
|
# 2 inputs, 1 output
|
|
assert_equal(np.add(a, dummy), 0)
|
|
assert_equal(np.add(dummy, a), 1)
|
|
assert_equal(np.add(dummy, dummy, a), (0,))
|
|
assert_equal(np.add(dummy, a, a), 1)
|
|
assert_equal(np.add(dummy, dummy, out=a), (0,))
|
|
assert_equal(np.add(dummy, dummy, out=(a,)), (0,))
|
|
assert_equal(np.add(a, dummy, out=a), 0)
|
|
|
|
def test_out_override(self):
|
|
# regression test for github bug 4753
|
|
class OutClass(np.ndarray):
|
|
def __array_ufunc__(self, ufunc, method, *inputs, **kw):
|
|
if 'out' in kw:
|
|
tmp_kw = kw.copy()
|
|
tmp_kw.pop('out')
|
|
func = getattr(ufunc, method)
|
|
kw['out'][0][...] = func(*inputs, **tmp_kw)
|
|
|
|
A = np.array([0]).view(OutClass)
|
|
B = np.array([5])
|
|
C = np.array([6])
|
|
np.multiply(C, B, A)
|
|
assert_equal(A[0], 30)
|
|
assert_(isinstance(A, OutClass))
|
|
A[0] = 0
|
|
np.multiply(C, B, out=A)
|
|
assert_equal(A[0], 30)
|
|
assert_(isinstance(A, OutClass))
|
|
|
|
def test_pow_override_with_errors(self):
|
|
# regression test for gh-9112
|
|
class PowerOnly(np.ndarray):
|
|
def __array_ufunc__(self, ufunc, method, *inputs, **kw):
|
|
if ufunc is not np.power:
|
|
raise NotImplementedError
|
|
return "POWER!"
|
|
# explicit cast to float, to ensure the fast power path is taken.
|
|
a = np.array(5., dtype=np.float64).view(PowerOnly)
|
|
assert_equal(a ** 2.5, "POWER!")
|
|
with assert_raises(NotImplementedError):
|
|
a ** 0.5
|
|
with assert_raises(NotImplementedError):
|
|
a ** 0
|
|
with assert_raises(NotImplementedError):
|
|
a ** 1
|
|
with assert_raises(NotImplementedError):
|
|
a ** -1
|
|
with assert_raises(NotImplementedError):
|
|
a ** 2
|
|
|
|
def test_pow_array_object_dtype(self):
|
|
# test pow on arrays of object dtype
|
|
class SomeClass:
|
|
def __init__(self, num=None):
|
|
self.num = num
|
|
|
|
# want to ensure a fast pow path is not taken
|
|
def __mul__(self, other):
|
|
raise AssertionError('__mul__ should not be called')
|
|
|
|
def __div__(self, other):
|
|
raise AssertionError('__div__ should not be called')
|
|
|
|
def __pow__(self, exp):
|
|
return SomeClass(num=self.num ** exp)
|
|
|
|
def __eq__(self, other):
|
|
if isinstance(other, SomeClass):
|
|
return self.num == other.num
|
|
|
|
__rpow__ = __pow__
|
|
|
|
def pow_for(exp, arr):
|
|
return np.array([x ** exp for x in arr])
|
|
|
|
obj_arr = np.array([SomeClass(1), SomeClass(2), SomeClass(3)])
|
|
|
|
assert_equal(obj_arr ** 0.5, pow_for(0.5, obj_arr))
|
|
assert_equal(obj_arr ** 0, pow_for(0, obj_arr))
|
|
assert_equal(obj_arr ** 1, pow_for(1, obj_arr))
|
|
assert_equal(obj_arr ** -1, pow_for(-1, obj_arr))
|
|
assert_equal(obj_arr ** 2, pow_for(2, obj_arr))
|
|
|
|
def test_pos_array_ufunc_override(self):
|
|
class A(np.ndarray):
|
|
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
|
|
return getattr(ufunc, method)(*[i.view(np.ndarray) for
|
|
i in inputs], **kwargs)
|
|
tst = np.array('foo').view(A)
|
|
with assert_raises(TypeError):
|
|
+tst
|
|
|
|
|
|
class TestTemporaryElide:
|
|
# elision is only triggered on relatively large arrays
|
|
|
|
def test_extension_incref_elide(self):
|
|
# test extension (e.g. cython) calling PyNumber_* slots without
|
|
# increasing the reference counts
|
|
#
|
|
# def incref_elide(a):
|
|
# d = input.copy() # refcount 1
|
|
# return d, d + d # PyNumber_Add without increasing refcount
|
|
from numpy.core._multiarray_tests import incref_elide
|
|
d = np.ones(100000)
|
|
orig, res = incref_elide(d)
|
|
d + d
|
|
# the return original should not be changed to an inplace operation
|
|
assert_array_equal(orig, d)
|
|
assert_array_equal(res, d + d)
|
|
|
|
def test_extension_incref_elide_stack(self):
|
|
# scanning if the refcount == 1 object is on the python stack to check
|
|
# that we are called directly from python is flawed as object may still
|
|
# be above the stack pointer and we have no access to the top of it
|
|
#
|
|
# def incref_elide_l(d):
|
|
# return l[4] + l[4] # PyNumber_Add without increasing refcount
|
|
from numpy.core._multiarray_tests import incref_elide_l
|
|
# padding with 1 makes sure the object on the stack is not overwritten
|
|
l = [1, 1, 1, 1, np.ones(100000)]
|
|
res = incref_elide_l(l)
|
|
# the return original should not be changed to an inplace operation
|
|
assert_array_equal(l[4], np.ones(100000))
|
|
assert_array_equal(res, l[4] + l[4])
|
|
|
|
def test_temporary_with_cast(self):
|
|
# check that we don't elide into a temporary which would need casting
|
|
d = np.ones(200000, dtype=np.int64)
|
|
assert_equal(((d + d) + 2**222).dtype, np.dtype('O'))
|
|
|
|
r = ((d + d) / 2)
|
|
assert_equal(r.dtype, np.dtype('f8'))
|
|
|
|
r = np.true_divide((d + d), 2)
|
|
assert_equal(r.dtype, np.dtype('f8'))
|
|
|
|
r = ((d + d) / 2.)
|
|
assert_equal(r.dtype, np.dtype('f8'))
|
|
|
|
r = ((d + d) // 2)
|
|
assert_equal(r.dtype, np.dtype(np.int64))
|
|
|
|
# commutative elision into the astype result
|
|
f = np.ones(100000, dtype=np.float32)
|
|
assert_equal(((f + f) + f.astype(np.float64)).dtype, np.dtype('f8'))
|
|
|
|
# no elision into lower type
|
|
d = f.astype(np.float64)
|
|
assert_equal(((f + f) + d).dtype, d.dtype)
|
|
l = np.ones(100000, dtype=np.longdouble)
|
|
assert_equal(((d + d) + l).dtype, l.dtype)
|
|
|
|
# test unary abs with different output dtype
|
|
for dt in (np.complex64, np.complex128, np.clongdouble):
|
|
c = np.ones(100000, dtype=dt)
|
|
r = abs(c * 2.0)
|
|
assert_equal(r.dtype, np.dtype('f%d' % (c.itemsize // 2)))
|
|
|
|
def test_elide_broadcast(self):
|
|
# test no elision on broadcast to higher dimension
|
|
# only triggers elision code path in debug mode as triggering it in
|
|
# normal mode needs 256kb large matching dimension, so a lot of memory
|
|
d = np.ones((2000, 1), dtype=int)
|
|
b = np.ones((2000), dtype=bool)
|
|
r = (1 - d) + b
|
|
assert_equal(r, 1)
|
|
assert_equal(r.shape, (2000, 2000))
|
|
|
|
def test_elide_scalar(self):
|
|
# check inplace op does not create ndarray from scalars
|
|
a = np.bool_()
|
|
assert_(type(~(a & a)) is np.bool_)
|
|
|
|
def test_elide_scalar_readonly(self):
|
|
# The imaginary part of a real array is readonly. This needs to go
|
|
# through fast_scalar_power which is only called for powers of
|
|
# +1, -1, 0, 0.5, and 2, so use 2. Also need valid refcount for
|
|
# elision which can be gotten for the imaginary part of a real
|
|
# array. Should not error.
|
|
a = np.empty(100000, dtype=np.float64)
|
|
a.imag ** 2
|
|
|
|
def test_elide_readonly(self):
|
|
# don't try to elide readonly temporaries
|
|
r = np.asarray(np.broadcast_to(np.zeros(1), 100000).flat) * 0.0
|
|
assert_equal(r, 0)
|
|
|
|
def test_elide_updateifcopy(self):
|
|
a = np.ones(2**20)[::2]
|
|
b = a.flat.__array__() + 1
|
|
del b
|
|
assert_equal(a, 1)
|
|
|
|
|
|
class TestCAPI:
|
|
def test_IsPythonScalar(self):
|
|
from numpy.core._multiarray_tests import IsPythonScalar
|
|
assert_(IsPythonScalar(b'foobar'))
|
|
assert_(IsPythonScalar(1))
|
|
assert_(IsPythonScalar(2**80))
|
|
assert_(IsPythonScalar(2.))
|
|
assert_(IsPythonScalar("a"))
|
|
|
|
|
|
class TestSubscripting:
|
|
def test_test_zero_rank(self):
|
|
x = np.array([1, 2, 3])
|
|
assert_(isinstance(x[0], np.int_))
|
|
assert_(type(x[0, ...]) is np.ndarray)
|
|
|
|
|
|
class TestPickling:
|
|
@pytest.mark.skipif(pickle.HIGHEST_PROTOCOL >= 5,
|
|
reason=('this tests the error messages when trying to'
|
|
'protocol 5 although it is not available'))
|
|
def test_correct_protocol5_error_message(self):
|
|
array = np.arange(10)
|
|
|
|
if sys.version_info[:2] in ((3, 6), (3, 7)):
|
|
# For the specific case of python3.6 and 3.7, raise a clear import
|
|
# error about the pickle5 backport when trying to use protocol=5
|
|
# without the pickle5 package
|
|
with pytest.raises(ImportError):
|
|
array.__reduce_ex__(5)
|
|
|
|
elif sys.version_info[:2] < (3, 6):
|
|
# when calling __reduce_ex__ explicitly with protocol=5 on python
|
|
# raise a ValueError saying that protocol 5 is not available for
|
|
# this python version
|
|
with pytest.raises(ValueError):
|
|
array.__reduce_ex__(5)
|
|
|
|
def test_record_array_with_object_dtype(self):
|
|
my_object = object()
|
|
|
|
arr_with_object = np.array(
|
|
[(my_object, 1, 2.0)],
|
|
dtype=[('a', object), ('b', int), ('c', float)])
|
|
arr_without_object = np.array(
|
|
[('xxx', 1, 2.0)],
|
|
dtype=[('a', str), ('b', int), ('c', float)])
|
|
|
|
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
|
|
depickled_arr_with_object = pickle.loads(
|
|
pickle.dumps(arr_with_object, protocol=proto))
|
|
depickled_arr_without_object = pickle.loads(
|
|
pickle.dumps(arr_without_object, protocol=proto))
|
|
|
|
assert_equal(arr_with_object.dtype,
|
|
depickled_arr_with_object.dtype)
|
|
assert_equal(arr_without_object.dtype,
|
|
depickled_arr_without_object.dtype)
|
|
|
|
@pytest.mark.skipif(pickle.HIGHEST_PROTOCOL < 5,
|
|
reason="requires pickle protocol 5")
|
|
def test_f_contiguous_array(self):
|
|
f_contiguous_array = np.array([[1, 2, 3], [4, 5, 6]], order='F')
|
|
buffers = []
|
|
|
|
# When using pickle protocol 5, Fortran-contiguous arrays can be
|
|
# serialized using out-of-band buffers
|
|
bytes_string = pickle.dumps(f_contiguous_array, protocol=5,
|
|
buffer_callback=buffers.append)
|
|
|
|
assert len(buffers) > 0
|
|
|
|
depickled_f_contiguous_array = pickle.loads(bytes_string,
|
|
buffers=buffers)
|
|
|
|
assert_equal(f_contiguous_array, depickled_f_contiguous_array)
|
|
|
|
def test_non_contiguous_array(self):
|
|
non_contiguous_array = np.arange(12).reshape(3, 4)[:, :2]
|
|
assert not non_contiguous_array.flags.c_contiguous
|
|
assert not non_contiguous_array.flags.f_contiguous
|
|
|
|
# make sure non-contiguous arrays can be pickled-depickled
|
|
# using any protocol
|
|
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
|
|
depickled_non_contiguous_array = pickle.loads(
|
|
pickle.dumps(non_contiguous_array, protocol=proto))
|
|
|
|
assert_equal(non_contiguous_array, depickled_non_contiguous_array)
|
|
|
|
def test_roundtrip(self):
|
|
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
|
|
carray = np.array([[2, 9], [7, 0], [3, 8]])
|
|
DATA = [
|
|
carray,
|
|
np.transpose(carray),
|
|
np.array([('xxx', 1, 2.0)], dtype=[('a', (str, 3)), ('b', int),
|
|
('c', float)])
|
|
]
|
|
|
|
refs = [weakref.ref(a) for a in DATA]
|
|
for a in DATA:
|
|
assert_equal(
|
|
a, pickle.loads(pickle.dumps(a, protocol=proto)),
|
|
err_msg="%r" % a)
|
|
del a, DATA, carray
|
|
break_cycles()
|
|
# check for reference leaks (gh-12793)
|
|
for ref in refs:
|
|
assert ref() is None
|
|
|
|
def _loads(self, obj):
|
|
return pickle.loads(obj, encoding='latin1')
|
|
|
|
# version 0 pickles, using protocol=2 to pickle
|
|
# version 0 doesn't have a version field
|
|
def test_version0_int8(self):
|
|
s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.'
|
|
a = np.array([1, 2, 3, 4], dtype=np.int8)
|
|
p = self._loads(s)
|
|
assert_equal(a, p)
|
|
|
|
def test_version0_float32(self):
|
|
s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.'
|
|
a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32)
|
|
p = self._loads(s)
|
|
assert_equal(a, p)
|
|
|
|
def test_version0_object(self):
|
|
s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.'
|
|
a = np.array([{'a': 1}, {'b': 2}])
|
|
p = self._loads(s)
|
|
assert_equal(a, p)
|
|
|
|
# version 1 pickles, using protocol=2 to pickle
|
|
def test_version1_int8(self):
|
|
s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.'
|
|
a = np.array([1, 2, 3, 4], dtype=np.int8)
|
|
p = self._loads(s)
|
|
assert_equal(a, p)
|
|
|
|
def test_version1_float32(self):
|
|
s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(K\x01U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.'
|
|
a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32)
|
|
p = self._loads(s)
|
|
assert_equal(a, p)
|
|
|
|
def test_version1_object(self):
|
|
s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.'
|
|
a = np.array([{'a': 1}, {'b': 2}])
|
|
p = self._loads(s)
|
|
assert_equal(a, p)
|
|
|
|
def test_subarray_int_shape(self):
|
|
s = b"cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'V6'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'a'\np12\ng3\ntp13\n(dp14\ng12\n(g7\n(S'V4'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'|'\np18\n(g7\n(S'i1'\np19\nI0\nI1\ntp20\nRp21\n(I3\nS'|'\np22\nNNNI-1\nI-1\nI0\ntp23\nb(I2\nI2\ntp24\ntp25\nNNI4\nI1\nI0\ntp26\nbI0\ntp27\nsg3\n(g7\n(S'V2'\np28\nI0\nI1\ntp29\nRp30\n(I3\nS'|'\np31\n(g21\nI2\ntp32\nNNI2\nI1\nI0\ntp33\nbI4\ntp34\nsI6\nI1\nI0\ntp35\nbI00\nS'\\x01\\x01\\x01\\x01\\x01\\x02'\np36\ntp37\nb."
|
|
a = np.array([(1, (1, 2))], dtype=[('a', 'i1', (2, 2)), ('b', 'i1', 2)])
|
|
p = self._loads(s)
|
|
assert_equal(a, p)
|
|
|
|
def test_datetime64_byteorder(self):
|
|
original = np.array([['2015-02-24T00:00:00.000000000']], dtype='datetime64[ns]')
|
|
|
|
original_byte_reversed = original.copy(order='K')
|
|
original_byte_reversed.dtype = original_byte_reversed.dtype.newbyteorder('S')
|
|
original_byte_reversed.byteswap(inplace=True)
|
|
|
|
new = pickle.loads(pickle.dumps(original_byte_reversed))
|
|
|
|
assert_equal(original.dtype, new.dtype)
|
|
|
|
|
|
class TestFancyIndexing:
|
|
def test_list(self):
|
|
x = np.ones((1, 1))
|
|
x[:, [0]] = 2.0
|
|
assert_array_equal(x, np.array([[2.0]]))
|
|
|
|
x = np.ones((1, 1, 1))
|
|
x[:, :, [0]] = 2.0
|
|
assert_array_equal(x, np.array([[[2.0]]]))
|
|
|
|
def test_tuple(self):
|
|
x = np.ones((1, 1))
|
|
x[:, (0,)] = 2.0
|
|
assert_array_equal(x, np.array([[2.0]]))
|
|
x = np.ones((1, 1, 1))
|
|
x[:, :, (0,)] = 2.0
|
|
assert_array_equal(x, np.array([[[2.0]]]))
|
|
|
|
def test_mask(self):
|
|
x = np.array([1, 2, 3, 4])
|
|
m = np.array([0, 1, 0, 0], bool)
|
|
assert_array_equal(x[m], np.array([2]))
|
|
|
|
def test_mask2(self):
|
|
x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
|
|
m = np.array([0, 1], bool)
|
|
m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool)
|
|
m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool)
|
|
assert_array_equal(x[m], np.array([[5, 6, 7, 8]]))
|
|
assert_array_equal(x[m2], np.array([2, 5]))
|
|
assert_array_equal(x[m3], np.array([2]))
|
|
|
|
def test_assign_mask(self):
|
|
x = np.array([1, 2, 3, 4])
|
|
m = np.array([0, 1, 0, 0], bool)
|
|
x[m] = 5
|
|
assert_array_equal(x, np.array([1, 5, 3, 4]))
|
|
|
|
def test_assign_mask2(self):
|
|
xorig = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
|
|
m = np.array([0, 1], bool)
|
|
m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool)
|
|
m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool)
|
|
x = xorig.copy()
|
|
x[m] = 10
|
|
assert_array_equal(x, np.array([[1, 2, 3, 4], [10, 10, 10, 10]]))
|
|
x = xorig.copy()
|
|
x[m2] = 10
|
|
assert_array_equal(x, np.array([[1, 10, 3, 4], [10, 6, 7, 8]]))
|
|
x = xorig.copy()
|
|
x[m3] = 10
|
|
assert_array_equal(x, np.array([[1, 10, 3, 4], [5, 6, 7, 8]]))
|
|
|
|
|
|
class TestStringCompare:
|
|
def test_string(self):
|
|
g1 = np.array(["This", "is", "example"])
|
|
g2 = np.array(["This", "was", "example"])
|
|
assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]])
|
|
assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]])
|
|
assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]])
|
|
assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]])
|
|
assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]])
|
|
assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]])
|
|
|
|
def test_mixed(self):
|
|
g1 = np.array(["spam", "spa", "spammer", "and eggs"])
|
|
g2 = "spam"
|
|
assert_array_equal(g1 == g2, [x == g2 for x in g1])
|
|
assert_array_equal(g1 != g2, [x != g2 for x in g1])
|
|
assert_array_equal(g1 < g2, [x < g2 for x in g1])
|
|
assert_array_equal(g1 > g2, [x > g2 for x in g1])
|
|
assert_array_equal(g1 <= g2, [x <= g2 for x in g1])
|
|
assert_array_equal(g1 >= g2, [x >= g2 for x in g1])
|
|
|
|
def test_unicode(self):
|
|
g1 = np.array([u"This", u"is", u"example"])
|
|
g2 = np.array([u"This", u"was", u"example"])
|
|
assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]])
|
|
assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]])
|
|
assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]])
|
|
assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]])
|
|
assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]])
|
|
assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]])
|
|
|
|
|
|
class TestArgmax:
|
|
|
|
nan_arr = [
|
|
([0, 1, 2, 3, np.nan], 4),
|
|
([0, 1, 2, np.nan, 3], 3),
|
|
([np.nan, 0, 1, 2, 3], 0),
|
|
([np.nan, 0, np.nan, 2, 3], 0),
|
|
([0, 1, 2, 3, complex(0, np.nan)], 4),
|
|
([0, 1, 2, 3, complex(np.nan, 0)], 4),
|
|
([0, 1, 2, complex(np.nan, 0), 3], 3),
|
|
([0, 1, 2, complex(0, np.nan), 3], 3),
|
|
([complex(0, np.nan), 0, 1, 2, 3], 0),
|
|
([complex(np.nan, np.nan), 0, 1, 2, 3], 0),
|
|
([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0),
|
|
([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0),
|
|
([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0),
|
|
|
|
([complex(0, 0), complex(0, 2), complex(0, 1)], 1),
|
|
([complex(1, 0), complex(0, 2), complex(0, 1)], 0),
|
|
([complex(1, 0), complex(0, 2), complex(1, 1)], 2),
|
|
|
|
([np.datetime64('1923-04-14T12:43:12'),
|
|
np.datetime64('1994-06-21T14:43:15'),
|
|
np.datetime64('2001-10-15T04:10:32'),
|
|
np.datetime64('1995-11-25T16:02:16'),
|
|
np.datetime64('2005-01-04T03:14:12'),
|
|
np.datetime64('2041-12-03T14:05:03')], 5),
|
|
([np.datetime64('1935-09-14T04:40:11'),
|
|
np.datetime64('1949-10-12T12:32:11'),
|
|
np.datetime64('2010-01-03T05:14:12'),
|
|
np.datetime64('2015-11-20T12:20:59'),
|
|
np.datetime64('1932-09-23T10:10:13'),
|
|
np.datetime64('2014-10-10T03:50:30')], 3),
|
|
# Assorted tests with NaTs
|
|
([np.datetime64('NaT'),
|
|
np.datetime64('NaT'),
|
|
np.datetime64('2010-01-03T05:14:12'),
|
|
np.datetime64('NaT'),
|
|
np.datetime64('2015-09-23T10:10:13'),
|
|
np.datetime64('1932-10-10T03:50:30')], 0),
|
|
([np.datetime64('2059-03-14T12:43:12'),
|
|
np.datetime64('1996-09-21T14:43:15'),
|
|
np.datetime64('NaT'),
|
|
np.datetime64('2022-12-25T16:02:16'),
|
|
np.datetime64('1963-10-04T03:14:12'),
|
|
np.datetime64('2013-05-08T18:15:23')], 2),
|
|
([np.timedelta64(2, 's'),
|
|
np.timedelta64(1, 's'),
|
|
np.timedelta64('NaT', 's'),
|
|
np.timedelta64(3, 's')], 2),
|
|
([np.timedelta64('NaT', 's')] * 3, 0),
|
|
|
|
([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35),
|
|
timedelta(days=-1, seconds=23)], 0),
|
|
([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5),
|
|
timedelta(days=5, seconds=14)], 1),
|
|
([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5),
|
|
timedelta(days=10, seconds=43)], 2),
|
|
|
|
([False, False, False, False, True], 4),
|
|
([False, False, False, True, False], 3),
|
|
([True, False, False, False, False], 0),
|
|
([True, False, True, False, False], 0),
|
|
]
|
|
|
|
def test_all(self):
|
|
a = np.random.normal(0, 1, (4, 5, 6, 7, 8))
|
|
for i in range(a.ndim):
|
|
amax = a.max(i)
|
|
aargmax = a.argmax(i)
|
|
axes = list(range(a.ndim))
|
|
axes.remove(i)
|
|
assert_(np.all(amax == aargmax.choose(*a.transpose(i,*axes))))
|
|
|
|
def test_combinations(self):
|
|
for arr, pos in self.nan_arr:
|
|
with suppress_warnings() as sup:
|
|
sup.filter(RuntimeWarning,
|
|
"invalid value encountered in reduce")
|
|
max_val = np.max(arr)
|
|
|
|
assert_equal(np.argmax(arr), pos, err_msg="%r" % arr)
|
|
assert_equal(arr[np.argmax(arr)], max_val, err_msg="%r" % arr)
|
|
|
|
def test_output_shape(self):
|
|
# see also gh-616
|
|
a = np.ones((10, 5))
|
|
# Check some simple shape mismatches
|
|
out = np.ones(11, dtype=np.int_)
|
|
assert_raises(ValueError, a.argmax, -1, out)
|
|
|
|
out = np.ones((2, 5), dtype=np.int_)
|
|
assert_raises(ValueError, a.argmax, -1, out)
|
|
|
|
# these could be relaxed possibly (used to allow even the previous)
|
|
out = np.ones((1, 10), dtype=np.int_)
|
|
assert_raises(ValueError, a.argmax, -1, out)
|
|
|
|
out = np.ones(10, dtype=np.int_)
|
|
a.argmax(-1, out=out)
|
|
assert_equal(out, a.argmax(-1))
|
|
|
|
def test_argmax_unicode(self):
|
|
d = np.zeros(6031, dtype='<U9')
|
|
d[5942] = "as"
|
|
assert_equal(d.argmax(), 5942)
|
|
|
|
def test_np_vs_ndarray(self):
|
|
# make sure both ndarray.argmax and numpy.argmax support out/axis args
|
|
a = np.random.normal(size=(2,3))
|
|
|
|
# check positional args
|
|
out1 = np.zeros(2, dtype=int)
|
|
out2 = np.zeros(2, dtype=int)
|
|
assert_equal(a.argmax(1, out1), np.argmax(a, 1, out2))
|
|
assert_equal(out1, out2)
|
|
|
|
# check keyword args
|
|
out1 = np.zeros(3, dtype=int)
|
|
out2 = np.zeros(3, dtype=int)
|
|
assert_equal(a.argmax(out=out1, axis=0), np.argmax(a, out=out2, axis=0))
|
|
assert_equal(out1, out2)
|
|
|
|
@pytest.mark.leaks_references(reason="replaces None with NULL.")
|
|
def test_object_argmax_with_NULLs(self):
|
|
# See gh-6032
|
|
a = np.empty(4, dtype='O')
|
|
ctypes.memset(a.ctypes.data, 0, a.nbytes)
|
|
assert_equal(a.argmax(), 0)
|
|
a[3] = 10
|
|
assert_equal(a.argmax(), 3)
|
|
a[1] = 30
|
|
assert_equal(a.argmax(), 1)
|
|
|
|
|
|
class TestArgmin:
|
|
|
|
nan_arr = [
|
|
([0, 1, 2, 3, np.nan], 4),
|
|
([0, 1, 2, np.nan, 3], 3),
|
|
([np.nan, 0, 1, 2, 3], 0),
|
|
([np.nan, 0, np.nan, 2, 3], 0),
|
|
([0, 1, 2, 3, complex(0, np.nan)], 4),
|
|
([0, 1, 2, 3, complex(np.nan, 0)], 4),
|
|
([0, 1, 2, complex(np.nan, 0), 3], 3),
|
|
([0, 1, 2, complex(0, np.nan), 3], 3),
|
|
([complex(0, np.nan), 0, 1, 2, 3], 0),
|
|
([complex(np.nan, np.nan), 0, 1, 2, 3], 0),
|
|
([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0),
|
|
([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0),
|
|
([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0),
|
|
|
|
([complex(0, 0), complex(0, 2), complex(0, 1)], 0),
|
|
([complex(1, 0), complex(0, 2), complex(0, 1)], 2),
|
|
([complex(1, 0), complex(0, 2), complex(1, 1)], 1),
|
|
|
|
([np.datetime64('1923-04-14T12:43:12'),
|
|
np.datetime64('1994-06-21T14:43:15'),
|
|
np.datetime64('2001-10-15T04:10:32'),
|
|
np.datetime64('1995-11-25T16:02:16'),
|
|
np.datetime64('2005-01-04T03:14:12'),
|
|
np.datetime64('2041-12-03T14:05:03')], 0),
|
|
([np.datetime64('1935-09-14T04:40:11'),
|
|
np.datetime64('1949-10-12T12:32:11'),
|
|
np.datetime64('2010-01-03T05:14:12'),
|
|
np.datetime64('2014-11-20T12:20:59'),
|
|
np.datetime64('2015-09-23T10:10:13'),
|
|
np.datetime64('1932-10-10T03:50:30')], 5),
|
|
# Assorted tests with NaTs
|
|
([np.datetime64('NaT'),
|
|
np.datetime64('NaT'),
|
|
np.datetime64('2010-01-03T05:14:12'),
|
|
np.datetime64('NaT'),
|
|
np.datetime64('2015-09-23T10:10:13'),
|
|
np.datetime64('1932-10-10T03:50:30')], 0),
|
|
([np.datetime64('2059-03-14T12:43:12'),
|
|
np.datetime64('1996-09-21T14:43:15'),
|
|
np.datetime64('NaT'),
|
|
np.datetime64('2022-12-25T16:02:16'),
|
|
np.datetime64('1963-10-04T03:14:12'),
|
|
np.datetime64('2013-05-08T18:15:23')], 2),
|
|
([np.timedelta64(2, 's'),
|
|
np.timedelta64(1, 's'),
|
|
np.timedelta64('NaT', 's'),
|
|
np.timedelta64(3, 's')], 2),
|
|
([np.timedelta64('NaT', 's')] * 3, 0),
|
|
|
|
([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35),
|
|
timedelta(days=-1, seconds=23)], 2),
|
|
([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5),
|
|
timedelta(days=5, seconds=14)], 0),
|
|
([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5),
|
|
timedelta(days=10, seconds=43)], 1),
|
|
|
|
([True, True, True, True, False], 4),
|
|
([True, True, True, False, True], 3),
|
|
([False, True, True, True, True], 0),
|
|
([False, True, False, True, True], 0),
|
|
]
|
|
|
|
def test_all(self):
|
|
a = np.random.normal(0, 1, (4, 5, 6, 7, 8))
|
|
for i in range(a.ndim):
|
|
amin = a.min(i)
|
|
aargmin = a.argmin(i)
|
|
axes = list(range(a.ndim))
|
|
axes.remove(i)
|
|
assert_(np.all(amin == aargmin.choose(*a.transpose(i,*axes))))
|
|
|
|
def test_combinations(self):
|
|
for arr, pos in self.nan_arr:
|
|
with suppress_warnings() as sup:
|
|
sup.filter(RuntimeWarning,
|
|
"invalid value encountered in reduce")
|
|
min_val = np.min(arr)
|
|
|
|
assert_equal(np.argmin(arr), pos, err_msg="%r" % arr)
|
|
assert_equal(arr[np.argmin(arr)], min_val, err_msg="%r" % arr)
|
|
|
|
def test_minimum_signed_integers(self):
|
|
|
|
a = np.array([1, -2**7, -2**7 + 1], dtype=np.int8)
|
|
assert_equal(np.argmin(a), 1)
|
|
|
|
a = np.array([1, -2**15, -2**15 + 1], dtype=np.int16)
|
|
assert_equal(np.argmin(a), 1)
|
|
|
|
a = np.array([1, -2**31, -2**31 + 1], dtype=np.int32)
|
|
assert_equal(np.argmin(a), 1)
|
|
|
|
a = np.array([1, -2**63, -2**63 + 1], dtype=np.int64)
|
|
assert_equal(np.argmin(a), 1)
|
|
|
|
def test_output_shape(self):
|
|
# see also gh-616
|
|
a = np.ones((10, 5))
|
|
# Check some simple shape mismatches
|
|
out = np.ones(11, dtype=np.int_)
|
|
assert_raises(ValueError, a.argmin, -1, out)
|
|
|
|
out = np.ones((2, 5), dtype=np.int_)
|
|
assert_raises(ValueError, a.argmin, -1, out)
|
|
|
|
# these could be relaxed possibly (used to allow even the previous)
|
|
out = np.ones((1, 10), dtype=np.int_)
|
|
assert_raises(ValueError, a.argmin, -1, out)
|
|
|
|
out = np.ones(10, dtype=np.int_)
|
|
a.argmin(-1, out=out)
|
|
assert_equal(out, a.argmin(-1))
|
|
|
|
def test_argmin_unicode(self):
|
|
d = np.ones(6031, dtype='<U9')
|
|
d[6001] = "0"
|
|
assert_equal(d.argmin(), 6001)
|
|
|
|
def test_np_vs_ndarray(self):
|
|
# make sure both ndarray.argmin and numpy.argmin support out/axis args
|
|
a = np.random.normal(size=(2, 3))
|
|
|
|
# check positional args
|
|
out1 = np.zeros(2, dtype=int)
|
|
out2 = np.ones(2, dtype=int)
|
|
assert_equal(a.argmin(1, out1), np.argmin(a, 1, out2))
|
|
assert_equal(out1, out2)
|
|
|
|
# check keyword args
|
|
out1 = np.zeros(3, dtype=int)
|
|
out2 = np.ones(3, dtype=int)
|
|
assert_equal(a.argmin(out=out1, axis=0), np.argmin(a, out=out2, axis=0))
|
|
assert_equal(out1, out2)
|
|
|
|
@pytest.mark.leaks_references(reason="replaces None with NULL.")
|
|
def test_object_argmin_with_NULLs(self):
|
|
# See gh-6032
|
|
a = np.empty(4, dtype='O')
|
|
ctypes.memset(a.ctypes.data, 0, a.nbytes)
|
|
assert_equal(a.argmin(), 0)
|
|
a[3] = 30
|
|
assert_equal(a.argmin(), 3)
|
|
a[1] = 10
|
|
assert_equal(a.argmin(), 1)
|
|
|
|
|
|
class TestMinMax:
|
|
|
|
def test_scalar(self):
|
|
assert_raises(np.AxisError, np.amax, 1, 1)
|
|
assert_raises(np.AxisError, np.amin, 1, 1)
|
|
|
|
assert_equal(np.amax(1, axis=0), 1)
|
|
assert_equal(np.amin(1, axis=0), 1)
|
|
assert_equal(np.amax(1, axis=None), 1)
|
|
assert_equal(np.amin(1, axis=None), 1)
|
|
|
|
def test_axis(self):
|
|
assert_raises(np.AxisError, np.amax, [1, 2, 3], 1000)
|
|
assert_equal(np.amax([[1, 2, 3]], axis=1), 3)
|
|
|
|
def test_datetime(self):
|
|
# Do not ignore NaT
|
|
for dtype in ('m8[s]', 'm8[Y]'):
|
|
a = np.arange(10).astype(dtype)
|
|
assert_equal(np.amin(a), a[0])
|
|
assert_equal(np.amax(a), a[9])
|
|
a[3] = 'NaT'
|
|
assert_equal(np.amin(a), a[3])
|
|
assert_equal(np.amax(a), a[3])
|
|
|
|
|
|
class TestNewaxis:
|
|
def test_basic(self):
|
|
sk = np.array([0, -0.1, 0.1])
|
|
res = 250*sk[:, np.newaxis]
|
|
assert_almost_equal(res.ravel(), 250*sk)
|
|
|
|
|
|
class TestClip:
|
|
def _check_range(self, x, cmin, cmax):
|
|
assert_(np.all(x >= cmin))
|
|
assert_(np.all(x <= cmax))
|
|
|
|
def _clip_type(self, type_group, array_max,
|
|
clip_min, clip_max, inplace=False,
|
|
expected_min=None, expected_max=None):
|
|
if expected_min is None:
|
|
expected_min = clip_min
|
|
if expected_max is None:
|
|
expected_max = clip_max
|
|
|
|
for T in np.sctypes[type_group]:
|
|
if sys.byteorder == 'little':
|
|
byte_orders = ['=', '>']
|
|
else:
|
|
byte_orders = ['<', '=']
|
|
|
|
for byteorder in byte_orders:
|
|
dtype = np.dtype(T).newbyteorder(byteorder)
|
|
|
|
x = (np.random.random(1000) * array_max).astype(dtype)
|
|
if inplace:
|
|
# The tests that call us pass clip_min and clip_max that
|
|
# might not fit in the destination dtype. They were written
|
|
# assuming the previous unsafe casting, which now must be
|
|
# passed explicitly to avoid a warning.
|
|
x.clip(clip_min, clip_max, x, casting='unsafe')
|
|
else:
|
|
x = x.clip(clip_min, clip_max)
|
|
byteorder = '='
|
|
|
|
if x.dtype.byteorder == '|':
|
|
byteorder = '|'
|
|
assert_equal(x.dtype.byteorder, byteorder)
|
|
self._check_range(x, expected_min, expected_max)
|
|
return x
|
|
|
|
def test_basic(self):
|
|
for inplace in [False, True]:
|
|
self._clip_type(
|
|
'float', 1024, -12.8, 100.2, inplace=inplace)
|
|
self._clip_type(
|
|
'float', 1024, 0, 0, inplace=inplace)
|
|
|
|
self._clip_type(
|
|
'int', 1024, -120, 100, inplace=inplace)
|
|
self._clip_type(
|
|
'int', 1024, 0, 0, inplace=inplace)
|
|
|
|
self._clip_type(
|
|
'uint', 1024, 0, 0, inplace=inplace)
|
|
self._clip_type(
|
|
'uint', 1024, -120, 100, inplace=inplace, expected_min=0)
|
|
|
|
def test_record_array(self):
|
|
rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
|
|
dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')])
|
|
y = rec['x'].clip(-0.3, 0.5)
|
|
self._check_range(y, -0.3, 0.5)
|
|
|
|
def test_max_or_min(self):
|
|
val = np.array([0, 1, 2, 3, 4, 5, 6, 7])
|
|
x = val.clip(3)
|
|
assert_(np.all(x >= 3))
|
|
x = val.clip(min=3)
|
|
assert_(np.all(x >= 3))
|
|
x = val.clip(max=4)
|
|
assert_(np.all(x <= 4))
|
|
|
|
def test_nan(self):
|
|
input_arr = np.array([-2., np.nan, 0.5, 3., 0.25, np.nan])
|
|
result = input_arr.clip(-1, 1)
|
|
expected = np.array([-1., np.nan, 0.5, 1., 0.25, np.nan])
|
|
assert_array_equal(result, expected)
|
|
|
|
|
|
class TestCompress:
|
|
def test_axis(self):
|
|
tgt = [[5, 6, 7, 8, 9]]
|
|
arr = np.arange(10).reshape(2, 5)
|
|
out = np.compress([0, 1], arr, axis=0)
|
|
assert_equal(out, tgt)
|
|
|
|
tgt = [[1, 3], [6, 8]]
|
|
out = np.compress([0, 1, 0, 1, 0], arr, axis=1)
|
|
assert_equal(out, tgt)
|
|
|
|
def test_truncate(self):
|
|
tgt = [[1], [6]]
|
|
arr = np.arange(10).reshape(2, 5)
|
|
out = np.compress([0, 1], arr, axis=1)
|
|
assert_equal(out, tgt)
|
|
|
|
def test_flatten(self):
|
|
arr = np.arange(10).reshape(2, 5)
|
|
out = np.compress([0, 1], arr)
|
|
assert_equal(out, 1)
|
|
|
|
|
|
class TestPutmask:
|
|
def tst_basic(self, x, T, mask, val):
|
|
np.putmask(x, mask, val)
|
|
assert_equal(x[mask], np.array(val, T))
|
|
|
|
def test_ip_types(self):
|
|
unchecked_types = [bytes, str, np.void]
|
|
|
|
x = np.random.random(1000)*100
|
|
mask = x < 40
|
|
|
|
for val in [-100, 0, 15]:
|
|
for types in np.sctypes.values():
|
|
for T in types:
|
|
if T not in unchecked_types:
|
|
self.tst_basic(x.copy().astype(T), T, mask, val)
|
|
|
|
# Also test string of a length which uses an untypical length
|
|
dt = np.dtype("S3")
|
|
self.tst_basic(x.astype(dt), dt.type, mask, dt.type(val)[:3])
|
|
|
|
def test_mask_size(self):
|
|
assert_raises(ValueError, np.putmask, np.array([1, 2, 3]), [True], 5)
|
|
|
|
@pytest.mark.parametrize('dtype', ('>i4', '<i4'))
|
|
def test_byteorder(self, dtype):
|
|
x = np.array([1, 2, 3], dtype)
|
|
np.putmask(x, [True, False, True], -1)
|
|
assert_array_equal(x, [-1, 2, -1])
|
|
|
|
def test_record_array(self):
|
|
# Note mixed byteorder.
|
|
rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
|
|
dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')])
|
|
np.putmask(rec['x'], [True, False], 10)
|
|
assert_array_equal(rec['x'], [10, 5])
|
|
assert_array_equal(rec['y'], [2, 4])
|
|
assert_array_equal(rec['z'], [3, 3])
|
|
np.putmask(rec['y'], [True, False], 11)
|
|
assert_array_equal(rec['x'], [10, 5])
|
|
assert_array_equal(rec['y'], [11, 4])
|
|
assert_array_equal(rec['z'], [3, 3])
|
|
|
|
def test_overlaps(self):
|
|
# gh-6272 check overlap
|
|
x = np.array([True, False, True, False])
|
|
np.putmask(x[1:4], [True, True, True], x[:3])
|
|
assert_equal(x, np.array([True, True, False, True]))
|
|
|
|
x = np.array([True, False, True, False])
|
|
np.putmask(x[1:4], x[:3], [True, False, True])
|
|
assert_equal(x, np.array([True, True, True, True]))
|
|
|
|
|
|
class TestTake:
|
|
def tst_basic(self, x):
|
|
ind = list(range(x.shape[0]))
|
|
assert_array_equal(x.take(ind, axis=0), x)
|
|
|
|
def test_ip_types(self):
|
|
unchecked_types = [bytes, str, np.void]
|
|
|
|
x = np.random.random(24)*100
|
|
x.shape = 2, 3, 4
|
|
for types in np.sctypes.values():
|
|
for T in types:
|
|
if T not in unchecked_types:
|
|
self.tst_basic(x.copy().astype(T))
|
|
|
|
# Also test string of a length which uses an untypical length
|
|
self.tst_basic(x.astype("S3"))
|
|
|
|
def test_raise(self):
|
|
x = np.random.random(24)*100
|
|
x.shape = 2, 3, 4
|
|
assert_raises(IndexError, x.take, [0, 1, 2], axis=0)
|
|
assert_raises(IndexError, x.take, [-3], axis=0)
|
|
assert_array_equal(x.take([-1], axis=0)[0], x[1])
|
|
|
|
def test_clip(self):
|
|
x = np.random.random(24)*100
|
|
x.shape = 2, 3, 4
|
|
assert_array_equal(x.take([-1], axis=0, mode='clip')[0], x[0])
|
|
assert_array_equal(x.take([2], axis=0, mode='clip')[0], x[1])
|
|
|
|
def test_wrap(self):
|
|
x = np.random.random(24)*100
|
|
x.shape = 2, 3, 4
|
|
assert_array_equal(x.take([-1], axis=0, mode='wrap')[0], x[1])
|
|
assert_array_equal(x.take([2], axis=0, mode='wrap')[0], x[0])
|
|
assert_array_equal(x.take([3], axis=0, mode='wrap')[0], x[1])
|
|
|
|
@pytest.mark.parametrize('dtype', ('>i4', '<i4'))
|
|
def test_byteorder(self, dtype):
|
|
x = np.array([1, 2, 3], dtype)
|
|
assert_array_equal(x.take([0, 2, 1]), [1, 3, 2])
|
|
|
|
def test_record_array(self):
|
|
# Note mixed byteorder.
|
|
rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
|
|
dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')])
|
|
rec1 = rec.take([1])
|
|
assert_(rec1['x'] == 5.0 and rec1['y'] == 4.0)
|
|
|
|
def test_out_overlap(self):
|
|
# gh-6272 check overlap on out
|
|
x = np.arange(5)
|
|
y = np.take(x, [1, 2, 3], out=x[2:5], mode='wrap')
|
|
assert_equal(y, np.array([1, 2, 3]))
|
|
|
|
class TestLexsort:
|
|
@pytest.mark.parametrize('dtype',[
|
|
np.uint8, np.uint16, np.uint32, np.uint64,
|
|
np.int8, np.int16, np.int32, np.int64,
|
|
np.float16, np.float32, np.float64
|
|
])
|
|
def test_basic(self, dtype):
|
|
a = np.array([1, 2, 1, 3, 1, 5], dtype=dtype)
|
|
b = np.array([0, 4, 5, 6, 2, 3], dtype=dtype)
|
|
idx = np.lexsort((b, a))
|
|
expected_idx = np.array([0, 4, 2, 1, 3, 5])
|
|
assert_array_equal(idx, expected_idx)
|
|
assert_array_equal(a[idx], np.sort(a))
|
|
|
|
def test_mixed(self):
|
|
a = np.array([1, 2, 1, 3, 1, 5])
|
|
b = np.array([0, 4, 5, 6, 2, 3], dtype='datetime64[D]')
|
|
|
|
idx = np.lexsort((b, a))
|
|
expected_idx = np.array([0, 4, 2, 1, 3, 5])
|
|
assert_array_equal(idx, expected_idx)
|
|
|
|
def test_datetime(self):
|
|
a = np.array([0,0,0], dtype='datetime64[D]')
|
|
b = np.array([2,1,0], dtype='datetime64[D]')
|
|
idx = np.lexsort((b, a))
|
|
expected_idx = np.array([2, 1, 0])
|
|
assert_array_equal(idx, expected_idx)
|
|
|
|
a = np.array([0,0,0], dtype='timedelta64[D]')
|
|
b = np.array([2,1,0], dtype='timedelta64[D]')
|
|
idx = np.lexsort((b, a))
|
|
expected_idx = np.array([2, 1, 0])
|
|
assert_array_equal(idx, expected_idx)
|
|
|
|
def test_object(self): # gh-6312
|
|
a = np.random.choice(10, 1000)
|
|
b = np.random.choice(['abc', 'xy', 'wz', 'efghi', 'qwst', 'x'], 1000)
|
|
|
|
for u in a, b:
|
|
left = np.lexsort((u.astype('O'),))
|
|
right = np.argsort(u, kind='mergesort')
|
|
assert_array_equal(left, right)
|
|
|
|
for u, v in (a, b), (b, a):
|
|
idx = np.lexsort((u, v))
|
|
assert_array_equal(idx, np.lexsort((u.astype('O'), v)))
|
|
assert_array_equal(idx, np.lexsort((u, v.astype('O'))))
|
|
u, v = np.array(u, dtype='object'), np.array(v, dtype='object')
|
|
assert_array_equal(idx, np.lexsort((u, v)))
|
|
|
|
def test_invalid_axis(self): # gh-7528
|
|
x = np.linspace(0., 1., 42*3).reshape(42, 3)
|
|
assert_raises(np.AxisError, np.lexsort, x, axis=2)
|
|
|
|
class TestIO:
|
|
"""Test tofile, fromfile, tobytes, and fromstring"""
|
|
|
|
def setup(self):
|
|
shape = (2, 4, 3)
|
|
rand = np.random.random
|
|
self.x = rand(shape) + rand(shape).astype(complex)*1j
|
|
self.x[0,:, 1] = [np.nan, np.inf, -np.inf, np.nan]
|
|
self.dtype = self.x.dtype
|
|
self.tempdir = tempfile.mkdtemp()
|
|
self.filename = tempfile.mktemp(dir=self.tempdir)
|
|
|
|
def teardown(self):
|
|
shutil.rmtree(self.tempdir)
|
|
|
|
def test_nofile(self):
|
|
# this should probably be supported as a file
|
|
# but for now test for proper errors
|
|
b = io.BytesIO()
|
|
assert_raises(IOError, np.fromfile, b, np.uint8, 80)
|
|
d = np.ones(7)
|
|
assert_raises(IOError, lambda x: x.tofile(b), d)
|
|
|
|
def test_bool_fromstring(self):
|
|
v = np.array([True, False, True, False], dtype=np.bool_)
|
|
y = np.fromstring('1 0 -2.3 0.0', sep=' ', dtype=np.bool_)
|
|
assert_array_equal(v, y)
|
|
|
|
def test_uint64_fromstring(self):
|
|
d = np.fromstring("9923372036854775807 104783749223640",
|
|
dtype=np.uint64, sep=' ')
|
|
e = np.array([9923372036854775807, 104783749223640], dtype=np.uint64)
|
|
assert_array_equal(d, e)
|
|
|
|
def test_int64_fromstring(self):
|
|
d = np.fromstring("-25041670086757 104783749223640",
|
|
dtype=np.int64, sep=' ')
|
|
e = np.array([-25041670086757, 104783749223640], dtype=np.int64)
|
|
assert_array_equal(d, e)
|
|
|
|
def test_empty_files_binary(self):
|
|
with open(self.filename, 'w') as f:
|
|
pass
|
|
y = np.fromfile(self.filename)
|
|
assert_(y.size == 0, "Array not empty")
|
|
|
|
def test_empty_files_text(self):
|
|
with open(self.filename, 'wb') as f:
|
|
pass
|
|
y = np.fromfile(self.filename, sep=" ")
|
|
assert_(y.size == 0, "Array not empty")
|
|
|
|
def test_roundtrip_file(self):
|
|
with open(self.filename, 'wb') as f:
|
|
self.x.tofile(f)
|
|
# NB. doesn't work with flush+seek, due to use of C stdio
|
|
with open(self.filename, 'rb') as f:
|
|
y = np.fromfile(f, dtype=self.dtype)
|
|
assert_array_equal(y, self.x.flat)
|
|
|
|
def test_roundtrip_filename(self):
|
|
self.x.tofile(self.filename)
|
|
y = np.fromfile(self.filename, dtype=self.dtype)
|
|
assert_array_equal(y, self.x.flat)
|
|
|
|
def test_roundtrip_pathlib(self):
|
|
p = pathlib.Path(self.filename)
|
|
self.x.tofile(p)
|
|
y = np.fromfile(p, dtype=self.dtype)
|
|
assert_array_equal(y, self.x.flat)
|
|
|
|
def test_roundtrip_dump_pathlib(self):
|
|
p = pathlib.Path(self.filename)
|
|
self.x.dump(p)
|
|
y = np.load(p, allow_pickle=True)
|
|
assert_array_equal(y, self.x)
|
|
|
|
def test_roundtrip_binary_str(self):
|
|
s = self.x.tobytes()
|
|
y = np.frombuffer(s, dtype=self.dtype)
|
|
assert_array_equal(y, self.x.flat)
|
|
|
|
s = self.x.tobytes('F')
|
|
y = np.frombuffer(s, dtype=self.dtype)
|
|
assert_array_equal(y, self.x.flatten('F'))
|
|
|
|
def test_roundtrip_str(self):
|
|
x = self.x.real.ravel()
|
|
s = "@".join(map(str, x))
|
|
y = np.fromstring(s, sep="@")
|
|
# NB. str imbues less precision
|
|
nan_mask = ~np.isfinite(x)
|
|
assert_array_equal(x[nan_mask], y[nan_mask])
|
|
assert_array_almost_equal(x[~nan_mask], y[~nan_mask], decimal=5)
|
|
|
|
def test_roundtrip_repr(self):
|
|
x = self.x.real.ravel()
|
|
s = "@".join(map(repr, x))
|
|
y = np.fromstring(s, sep="@")
|
|
assert_array_equal(x, y)
|
|
|
|
def test_unseekable_fromfile(self):
|
|
# gh-6246
|
|
self.x.tofile(self.filename)
|
|
|
|
def fail(*args, **kwargs):
|
|
raise IOError('Can not tell or seek')
|
|
|
|
with io.open(self.filename, 'rb', buffering=0) as f:
|
|
f.seek = fail
|
|
f.tell = fail
|
|
assert_raises(IOError, np.fromfile, f, dtype=self.dtype)
|
|
|
|
def test_io_open_unbuffered_fromfile(self):
|
|
# gh-6632
|
|
self.x.tofile(self.filename)
|
|
with io.open(self.filename, 'rb', buffering=0) as f:
|
|
y = np.fromfile(f, dtype=self.dtype)
|
|
assert_array_equal(y, self.x.flat)
|
|
|
|
def test_largish_file(self):
|
|
# check the fallocate path on files > 16MB
|
|
d = np.zeros(4 * 1024 ** 2)
|
|
d.tofile(self.filename)
|
|
assert_equal(os.path.getsize(self.filename), d.nbytes)
|
|
assert_array_equal(d, np.fromfile(self.filename))
|
|
# check offset
|
|
with open(self.filename, "r+b") as f:
|
|
f.seek(d.nbytes)
|
|
d.tofile(f)
|
|
assert_equal(os.path.getsize(self.filename), d.nbytes * 2)
|
|
# check append mode (gh-8329)
|
|
open(self.filename, "w").close() # delete file contents
|
|
with open(self.filename, "ab") as f:
|
|
d.tofile(f)
|
|
assert_array_equal(d, np.fromfile(self.filename))
|
|
with open(self.filename, "ab") as f:
|
|
d.tofile(f)
|
|
assert_equal(os.path.getsize(self.filename), d.nbytes * 2)
|
|
|
|
def test_io_open_buffered_fromfile(self):
|
|
# gh-6632
|
|
self.x.tofile(self.filename)
|
|
with io.open(self.filename, 'rb', buffering=-1) as f:
|
|
y = np.fromfile(f, dtype=self.dtype)
|
|
assert_array_equal(y, self.x.flat)
|
|
|
|
def test_file_position_after_fromfile(self):
|
|
# gh-4118
|
|
sizes = [io.DEFAULT_BUFFER_SIZE//8,
|
|
io.DEFAULT_BUFFER_SIZE,
|
|
io.DEFAULT_BUFFER_SIZE*8]
|
|
|
|
for size in sizes:
|
|
with open(self.filename, 'wb') as f:
|
|
f.seek(size-1)
|
|
f.write(b'\0')
|
|
|
|
for mode in ['rb', 'r+b']:
|
|
err_msg = "%d %s" % (size, mode)
|
|
|
|
with open(self.filename, mode) as f:
|
|
f.read(2)
|
|
np.fromfile(f, dtype=np.float64, count=1)
|
|
pos = f.tell()
|
|
assert_equal(pos, 10, err_msg=err_msg)
|
|
|
|
def test_file_position_after_tofile(self):
|
|
# gh-4118
|
|
sizes = [io.DEFAULT_BUFFER_SIZE//8,
|
|
io.DEFAULT_BUFFER_SIZE,
|
|
io.DEFAULT_BUFFER_SIZE*8]
|
|
|
|
for size in sizes:
|
|
err_msg = "%d" % (size,)
|
|
|
|
with open(self.filename, 'wb') as f:
|
|
f.seek(size-1)
|
|
f.write(b'\0')
|
|
f.seek(10)
|
|
f.write(b'12')
|
|
np.array([0], dtype=np.float64).tofile(f)
|
|
pos = f.tell()
|
|
assert_equal(pos, 10 + 2 + 8, err_msg=err_msg)
|
|
|
|
with open(self.filename, 'r+b') as f:
|
|
f.read(2)
|
|
f.seek(0, 1) # seek between read&write required by ANSI C
|
|
np.array([0], dtype=np.float64).tofile(f)
|
|
pos = f.tell()
|
|
assert_equal(pos, 10, err_msg=err_msg)
|
|
|
|
def test_load_object_array_fromfile(self):
|
|
# gh-12300
|
|
with open(self.filename, 'w') as f:
|
|
# Ensure we have a file with consistent contents
|
|
pass
|
|
|
|
with open(self.filename, 'rb') as f:
|
|
assert_raises_regex(ValueError, "Cannot read into object array",
|
|
np.fromfile, f, dtype=object)
|
|
|
|
assert_raises_regex(ValueError, "Cannot read into object array",
|
|
np.fromfile, self.filename, dtype=object)
|
|
|
|
def test_fromfile_offset(self):
|
|
with open(self.filename, 'wb') as f:
|
|
self.x.tofile(f)
|
|
|
|
with open(self.filename, 'rb') as f:
|
|
y = np.fromfile(f, dtype=self.dtype, offset=0)
|
|
assert_array_equal(y, self.x.flat)
|
|
|
|
with open(self.filename, 'rb') as f:
|
|
count_items = len(self.x.flat) // 8
|
|
offset_items = len(self.x.flat) // 4
|
|
offset_bytes = self.dtype.itemsize * offset_items
|
|
y = np.fromfile(f, dtype=self.dtype, count=count_items, offset=offset_bytes)
|
|
assert_array_equal(y, self.x.flat[offset_items:offset_items+count_items])
|
|
|
|
# subsequent seeks should stack
|
|
offset_bytes = self.dtype.itemsize
|
|
z = np.fromfile(f, dtype=self.dtype, offset=offset_bytes)
|
|
assert_array_equal(z, self.x.flat[offset_items+count_items+1:])
|
|
|
|
with open(self.filename, 'wb') as f:
|
|
self.x.tofile(f, sep=",")
|
|
|
|
with open(self.filename, 'rb') as f:
|
|
assert_raises_regex(
|
|
TypeError,
|
|
"'offset' argument only permitted for binary files",
|
|
np.fromfile, self.filename, dtype=self.dtype,
|
|
sep=",", offset=1)
|
|
|
|
def _check_from(self, s, value, **kw):
|
|
if 'sep' not in kw:
|
|
y = np.frombuffer(s, **kw)
|
|
else:
|
|
y = np.fromstring(s, **kw)
|
|
assert_array_equal(y, value)
|
|
|
|
with open(self.filename, 'wb') as f:
|
|
f.write(s)
|
|
y = np.fromfile(self.filename, **kw)
|
|
assert_array_equal(y, value)
|
|
|
|
def test_nan(self):
|
|
self._check_from(
|
|
b"nan +nan -nan NaN nan(foo) +NaN(BAR) -NAN(q_u_u_x_)",
|
|
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
|
|
sep=' ')
|
|
|
|
def test_inf(self):
|
|
self._check_from(
|
|
b"inf +inf -inf infinity -Infinity iNfInItY -inF",
|
|
[np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf, -np.inf],
|
|
sep=' ')
|
|
|
|
def test_numbers(self):
|
|
self._check_from(b"1.234 -1.234 .3 .3e55 -123133.1231e+133",
|
|
[1.234, -1.234, .3, .3e55, -123133.1231e+133], sep=' ')
|
|
|
|
def test_binary(self):
|
|
self._check_from(b'\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@',
|
|
np.array([1, 2, 3, 4]),
|
|
dtype='<f4')
|
|
|
|
@pytest.mark.slow # takes > 1 minute on mechanical hard drive
|
|
def test_big_binary(self):
|
|
"""Test workarounds for 32-bit limited fwrite, fseek, and ftell
|
|
calls in windows. These normally would hang doing something like this.
|
|
See http://projects.scipy.org/numpy/ticket/1660"""
|
|
if sys.platform != 'win32':
|
|
return
|
|
try:
|
|
# before workarounds, only up to 2**32-1 worked
|
|
fourgbplus = 2**32 + 2**16
|
|
testbytes = np.arange(8, dtype=np.int8)
|
|
n = len(testbytes)
|
|
flike = tempfile.NamedTemporaryFile()
|
|
f = flike.file
|
|
np.tile(testbytes, fourgbplus // testbytes.nbytes).tofile(f)
|
|
flike.seek(0)
|
|
a = np.fromfile(f, dtype=np.int8)
|
|
flike.close()
|
|
assert_(len(a) == fourgbplus)
|
|
# check only start and end for speed:
|
|
assert_((a[:n] == testbytes).all())
|
|
assert_((a[-n:] == testbytes).all())
|
|
except (MemoryError, ValueError):
|
|
pass
|
|
|
|
def test_string(self):
|
|
self._check_from(b'1,2,3,4', [1., 2., 3., 4.], sep=',')
|
|
|
|
def test_counted_string(self):
|
|
self._check_from(b'1,2,3,4', [1., 2., 3., 4.], count=4, sep=',')
|
|
self._check_from(b'1,2,3,4', [1., 2., 3.], count=3, sep=',')
|
|
self._check_from(b'1,2,3,4', [1., 2., 3., 4.], count=-1, sep=',')
|
|
|
|
def test_string_with_ws(self):
|
|
self._check_from(b'1 2 3 4 ', [1, 2, 3, 4], dtype=int, sep=' ')
|
|
|
|
def test_counted_string_with_ws(self):
|
|
self._check_from(b'1 2 3 4 ', [1, 2, 3], count=3, dtype=int,
|
|
sep=' ')
|
|
|
|
def test_ascii(self):
|
|
self._check_from(b'1 , 2 , 3 , 4', [1., 2., 3., 4.], sep=',')
|
|
self._check_from(b'1,2,3,4', [1., 2., 3., 4.], dtype=float, sep=',')
|
|
|
|
def test_malformed(self):
|
|
with assert_warns(DeprecationWarning):
|
|
self._check_from(b'1.234 1,234', [1.234, 1.], sep=' ')
|
|
|
|
def test_long_sep(self):
|
|
self._check_from(b'1_x_3_x_4_x_5', [1, 3, 4, 5], sep='_x_')
|
|
|
|
def test_dtype(self):
|
|
v = np.array([1, 2, 3, 4], dtype=np.int_)
|
|
self._check_from(b'1,2,3,4', v, sep=',', dtype=np.int_)
|
|
|
|
def test_dtype_bool(self):
|
|
# can't use _check_from because fromstring can't handle True/False
|
|
v = np.array([True, False, True, False], dtype=np.bool_)
|
|
s = b'1,0,-2.3,0'
|
|
with open(self.filename, 'wb') as f:
|
|
f.write(s)
|
|
y = np.fromfile(self.filename, sep=',', dtype=np.bool_)
|
|
assert_(y.dtype == '?')
|
|
assert_array_equal(y, v)
|
|
|
|
def test_tofile_sep(self):
|
|
x = np.array([1.51, 2, 3.51, 4], dtype=float)
|
|
with open(self.filename, 'w') as f:
|
|
x.tofile(f, sep=',')
|
|
with open(self.filename, 'r') as f:
|
|
s = f.read()
|
|
#assert_equal(s, '1.51,2.0,3.51,4.0')
|
|
y = np.array([float(p) for p in s.split(',')])
|
|
assert_array_equal(x,y)
|
|
|
|
def test_tofile_format(self):
|
|
x = np.array([1.51, 2, 3.51, 4], dtype=float)
|
|
with open(self.filename, 'w') as f:
|
|
x.tofile(f, sep=',', format='%.2f')
|
|
with open(self.filename, 'r') as f:
|
|
s = f.read()
|
|
assert_equal(s, '1.51,2.00,3.51,4.00')
|
|
|
|
def test_locale(self):
|
|
with CommaDecimalPointLocale():
|
|
self.test_numbers()
|
|
self.test_nan()
|
|
self.test_inf()
|
|
self.test_counted_string()
|
|
self.test_ascii()
|
|
self.test_malformed()
|
|
self.test_tofile_sep()
|
|
self.test_tofile_format()
|
|
|
|
def test_fromfile_subarray_binary(self):
|
|
# Test subarray dtypes which are absorbed into the shape
|
|
x = np.arange(24, dtype="i4").reshape(2, 3, 4)
|
|
x.tofile(self.filename)
|
|
res = np.fromfile(self.filename, dtype="(3,4)i4")
|
|
assert_array_equal(x, res)
|
|
|
|
x_str = x.tobytes()
|
|
with assert_warns(DeprecationWarning):
|
|
# binary fromstring is deprecated
|
|
res = np.fromstring(x_str, dtype="(3,4)i4")
|
|
assert_array_equal(x, res)
|
|
|
|
|
|
class TestFromBuffer:
|
|
@pytest.mark.parametrize('byteorder', ['<', '>'])
|
|
@pytest.mark.parametrize('dtype', [float, int, complex])
|
|
def test_basic(self, byteorder, dtype):
|
|
dt = np.dtype(dtype).newbyteorder(byteorder)
|
|
x = (np.random.random((4, 7)) * 5).astype(dt)
|
|
buf = x.tobytes()
|
|
assert_array_equal(np.frombuffer(buf, dtype=dt), x.flat)
|
|
|
|
def test_empty(self):
|
|
assert_array_equal(np.frombuffer(b''), np.array([]))
|
|
|
|
|
|
class TestFlat:
|
|
def setup(self):
|
|
a0 = np.arange(20.0)
|
|
a = a0.reshape(4, 5)
|
|
a0.shape = (4, 5)
|
|
a.flags.writeable = False
|
|
self.a = a
|
|
self.b = a[::2, ::2]
|
|
self.a0 = a0
|
|
self.b0 = a0[::2, ::2]
|
|
|
|
def test_contiguous(self):
|
|
testpassed = False
|
|
try:
|
|
self.a.flat[12] = 100.0
|
|
except ValueError:
|
|
testpassed = True
|
|
assert_(testpassed)
|
|
assert_(self.a.flat[12] == 12.0)
|
|
|
|
def test_discontiguous(self):
|
|
testpassed = False
|
|
try:
|
|
self.b.flat[4] = 100.0
|
|
except ValueError:
|
|
testpassed = True
|
|
assert_(testpassed)
|
|
assert_(self.b.flat[4] == 12.0)
|
|
|
|
def test___array__(self):
|
|
c = self.a.flat.__array__()
|
|
d = self.b.flat.__array__()
|
|
e = self.a0.flat.__array__()
|
|
f = self.b0.flat.__array__()
|
|
|
|
assert_(c.flags.writeable is False)
|
|
assert_(d.flags.writeable is False)
|
|
# for 1.14 all are set to non-writeable on the way to replacing the
|
|
# UPDATEIFCOPY array returned for non-contiguous arrays.
|
|
assert_(e.flags.writeable is True)
|
|
assert_(f.flags.writeable is False)
|
|
with assert_warns(DeprecationWarning):
|
|
assert_(c.flags.updateifcopy is False)
|
|
with assert_warns(DeprecationWarning):
|
|
assert_(d.flags.updateifcopy is False)
|
|
with assert_warns(DeprecationWarning):
|
|
assert_(e.flags.updateifcopy is False)
|
|
with assert_warns(DeprecationWarning):
|
|
# UPDATEIFCOPY is removed.
|
|
assert_(f.flags.updateifcopy is False)
|
|
assert_(c.flags.writebackifcopy is False)
|
|
assert_(d.flags.writebackifcopy is False)
|
|
assert_(e.flags.writebackifcopy is False)
|
|
assert_(f.flags.writebackifcopy is False)
|
|
|
|
@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
|
|
def test_refcount(self):
|
|
# includes regression test for reference count error gh-13165
|
|
inds = [np.intp(0), np.array([True]*self.a.size), np.array([0]), None]
|
|
indtype = np.dtype(np.intp)
|
|
rc_indtype = sys.getrefcount(indtype)
|
|
for ind in inds:
|
|
rc_ind = sys.getrefcount(ind)
|
|
for _ in range(100):
|
|
try:
|
|
self.a.flat[ind]
|
|
except IndexError:
|
|
pass
|
|
assert_(abs(sys.getrefcount(ind) - rc_ind) < 50)
|
|
assert_(abs(sys.getrefcount(indtype) - rc_indtype) < 50)
|
|
|
|
|
|
class TestResize:
|
|
|
|
@_no_tracing
|
|
def test_basic(self):
|
|
x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
if IS_PYPY:
|
|
x.resize((5, 5), refcheck=False)
|
|
else:
|
|
x.resize((5, 5))
|
|
assert_array_equal(x.flat[:9],
|
|
np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).flat)
|
|
assert_array_equal(x[9:].flat, 0)
|
|
|
|
def test_check_reference(self):
|
|
x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
y = x
|
|
assert_raises(ValueError, x.resize, (5, 1))
|
|
del y # avoid pyflakes unused variable warning.
|
|
|
|
@_no_tracing
|
|
def test_int_shape(self):
|
|
x = np.eye(3)
|
|
if IS_PYPY:
|
|
x.resize(3, refcheck=False)
|
|
else:
|
|
x.resize(3)
|
|
assert_array_equal(x, np.eye(3)[0,:])
|
|
|
|
def test_none_shape(self):
|
|
x = np.eye(3)
|
|
x.resize(None)
|
|
assert_array_equal(x, np.eye(3))
|
|
x.resize()
|
|
assert_array_equal(x, np.eye(3))
|
|
|
|
def test_0d_shape(self):
|
|
# to it multiple times to test it does not break alloc cache gh-9216
|
|
for i in range(10):
|
|
x = np.empty((1,))
|
|
x.resize(())
|
|
assert_equal(x.shape, ())
|
|
assert_equal(x.size, 1)
|
|
x = np.empty(())
|
|
x.resize((1,))
|
|
assert_equal(x.shape, (1,))
|
|
assert_equal(x.size, 1)
|
|
|
|
def test_invalid_arguments(self):
|
|
assert_raises(TypeError, np.eye(3).resize, 'hi')
|
|
assert_raises(ValueError, np.eye(3).resize, -1)
|
|
assert_raises(TypeError, np.eye(3).resize, order=1)
|
|
assert_raises(TypeError, np.eye(3).resize, refcheck='hi')
|
|
|
|
@_no_tracing
|
|
def test_freeform_shape(self):
|
|
x = np.eye(3)
|
|
if IS_PYPY:
|
|
x.resize(3, 2, 1, refcheck=False)
|
|
else:
|
|
x.resize(3, 2, 1)
|
|
assert_(x.shape == (3, 2, 1))
|
|
|
|
@_no_tracing
|
|
def test_zeros_appended(self):
|
|
x = np.eye(3)
|
|
if IS_PYPY:
|
|
x.resize(2, 3, 3, refcheck=False)
|
|
else:
|
|
x.resize(2, 3, 3)
|
|
assert_array_equal(x[0], np.eye(3))
|
|
assert_array_equal(x[1], np.zeros((3, 3)))
|
|
|
|
@_no_tracing
|
|
def test_obj_obj(self):
|
|
# check memory is initialized on resize, gh-4857
|
|
a = np.ones(10, dtype=[('k', object, 2)])
|
|
if IS_PYPY:
|
|
a.resize(15, refcheck=False)
|
|
else:
|
|
a.resize(15,)
|
|
assert_equal(a.shape, (15,))
|
|
assert_array_equal(a['k'][-5:], 0)
|
|
assert_array_equal(a['k'][:-5], 1)
|
|
|
|
def test_empty_view(self):
|
|
# check that sizes containing a zero don't trigger a reallocate for
|
|
# already empty arrays
|
|
x = np.zeros((10, 0), int)
|
|
x_view = x[...]
|
|
x_view.resize((0, 10))
|
|
x_view.resize((0, 100))
|
|
|
|
def test_check_weakref(self):
|
|
x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
xref = weakref.ref(x)
|
|
assert_raises(ValueError, x.resize, (5, 1))
|
|
del xref # avoid pyflakes unused variable warning.
|
|
|
|
|
|
class TestRecord:
|
|
def test_field_rename(self):
|
|
dt = np.dtype([('f', float), ('i', int)])
|
|
dt.names = ['p', 'q']
|
|
assert_equal(dt.names, ['p', 'q'])
|
|
|
|
def test_multiple_field_name_occurrence(self):
|
|
def test_dtype_init():
|
|
np.dtype([("A", "f8"), ("B", "f8"), ("A", "f8")])
|
|
|
|
# Error raised when multiple fields have the same name
|
|
assert_raises(ValueError, test_dtype_init)
|
|
|
|
def test_bytes_fields(self):
|
|
# Bytes are not allowed in field names and not recognized in titles
|
|
# on Py3
|
|
assert_raises(TypeError, np.dtype, [(b'a', int)])
|
|
assert_raises(TypeError, np.dtype, [(('b', b'a'), int)])
|
|
|
|
dt = np.dtype([((b'a', 'b'), int)])
|
|
assert_raises(TypeError, dt.__getitem__, b'a')
|
|
|
|
x = np.array([(1,), (2,), (3,)], dtype=dt)
|
|
assert_raises(IndexError, x.__getitem__, b'a')
|
|
|
|
y = x[0]
|
|
assert_raises(IndexError, y.__getitem__, b'a')
|
|
|
|
def test_multiple_field_name_unicode(self):
|
|
def test_dtype_unicode():
|
|
np.dtype([("\u20B9", "f8"), ("B", "f8"), ("\u20B9", "f8")])
|
|
|
|
# Error raised when multiple fields have the same name(unicode included)
|
|
assert_raises(ValueError, test_dtype_unicode)
|
|
|
|
def test_fromarrays_unicode(self):
|
|
# A single name string provided to fromarrays() is allowed to be unicode
|
|
# on both Python 2 and 3:
|
|
x = np.core.records.fromarrays([[0], [1]], names=u'a,b', formats=u'i4,i4')
|
|
assert_equal(x['a'][0], 0)
|
|
assert_equal(x['b'][0], 1)
|
|
|
|
def test_unicode_order(self):
|
|
# Test that we can sort with order as a unicode field name in both Python 2 and
|
|
# 3:
|
|
name = u'b'
|
|
x = np.array([1, 3, 2], dtype=[(name, int)])
|
|
x.sort(order=name)
|
|
assert_equal(x[u'b'], np.array([1, 2, 3]))
|
|
|
|
def test_field_names(self):
|
|
# Test unicode and 8-bit / byte strings can be used
|
|
a = np.zeros((1,), dtype=[('f1', 'i4'),
|
|
('f2', 'i4'),
|
|
('f3', [('sf1', 'i4')])])
|
|
# byte string indexing fails gracefully
|
|
assert_raises(IndexError, a.__setitem__, b'f1', 1)
|
|
assert_raises(IndexError, a.__getitem__, b'f1')
|
|
assert_raises(IndexError, a['f1'].__setitem__, b'sf1', 1)
|
|
assert_raises(IndexError, a['f1'].__getitem__, b'sf1')
|
|
b = a.copy()
|
|
fn1 = str('f1')
|
|
b[fn1] = 1
|
|
assert_equal(b[fn1], 1)
|
|
fnn = str('not at all')
|
|
assert_raises(ValueError, b.__setitem__, fnn, 1)
|
|
assert_raises(ValueError, b.__getitem__, fnn)
|
|
b[0][fn1] = 2
|
|
assert_equal(b[fn1], 2)
|
|
# Subfield
|
|
assert_raises(ValueError, b[0].__setitem__, fnn, 1)
|
|
assert_raises(ValueError, b[0].__getitem__, fnn)
|
|
# Subfield
|
|
fn3 = str('f3')
|
|
sfn1 = str('sf1')
|
|
b[fn3][sfn1] = 1
|
|
assert_equal(b[fn3][sfn1], 1)
|
|
assert_raises(ValueError, b[fn3].__setitem__, fnn, 1)
|
|
assert_raises(ValueError, b[fn3].__getitem__, fnn)
|
|
# multiple subfields
|
|
fn2 = str('f2')
|
|
b[fn2] = 3
|
|
|
|
assert_equal(b[['f1', 'f2']][0].tolist(), (2, 3))
|
|
assert_equal(b[['f2', 'f1']][0].tolist(), (3, 2))
|
|
assert_equal(b[['f1', 'f3']][0].tolist(), (2, (1,)))
|
|
|
|
# non-ascii unicode field indexing is well behaved
|
|
assert_raises(ValueError, a.__setitem__, u'\u03e0', 1)
|
|
assert_raises(ValueError, a.__getitem__, u'\u03e0')
|
|
|
|
def test_record_hash(self):
|
|
a = np.array([(1, 2), (1, 2)], dtype='i1,i2')
|
|
a.flags.writeable = False
|
|
b = np.array([(1, 2), (3, 4)], dtype=[('num1', 'i1'), ('num2', 'i2')])
|
|
b.flags.writeable = False
|
|
c = np.array([(1, 2), (3, 4)], dtype='i1,i2')
|
|
c.flags.writeable = False
|
|
assert_(hash(a[0]) == hash(a[1]))
|
|
assert_(hash(a[0]) == hash(b[0]))
|
|
assert_(hash(a[0]) != hash(b[1]))
|
|
assert_(hash(c[0]) == hash(a[0]) and c[0] == a[0])
|
|
|
|
def test_record_no_hash(self):
|
|
a = np.array([(1, 2), (1, 2)], dtype='i1,i2')
|
|
assert_raises(TypeError, hash, a[0])
|
|
|
|
def test_empty_structure_creation(self):
|
|
# make sure these do not raise errors (gh-5631)
|
|
np.array([()], dtype={'names': [], 'formats': [],
|
|
'offsets': [], 'itemsize': 12})
|
|
np.array([(), (), (), (), ()], dtype={'names': [], 'formats': [],
|
|
'offsets': [], 'itemsize': 12})
|
|
|
|
def test_multifield_indexing_view(self):
|
|
a = np.ones(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u4')])
|
|
v = a[['a', 'c']]
|
|
assert_(v.base is a)
|
|
assert_(v.dtype == np.dtype({'names': ['a', 'c'],
|
|
'formats': ['i4', 'u4'],
|
|
'offsets': [0, 8]}))
|
|
v[:] = (4,5)
|
|
assert_equal(a[0].item(), (4, 1, 5))
|
|
|
|
class TestView:
|
|
def test_basic(self):
|
|
x = np.array([(1, 2, 3, 4), (5, 6, 7, 8)],
|
|
dtype=[('r', np.int8), ('g', np.int8),
|
|
('b', np.int8), ('a', np.int8)])
|
|
# We must be specific about the endianness here:
|
|
y = x.view(dtype='<i4')
|
|
# ... and again without the keyword.
|
|
z = x.view('<i4')
|
|
assert_array_equal(y, z)
|
|
assert_array_equal(y, [67305985, 134678021])
|
|
|
|
|
|
def _mean(a, **args):
|
|
return a.mean(**args)
|
|
|
|
|
|
def _var(a, **args):
|
|
return a.var(**args)
|
|
|
|
|
|
def _std(a, **args):
|
|
return a.std(**args)
|
|
|
|
|
|
class TestStats:
|
|
|
|
funcs = [_mean, _var, _std]
|
|
|
|
def setup(self):
|
|
np.random.seed(range(3))
|
|
self.rmat = np.random.random((4, 5))
|
|
self.cmat = self.rmat + 1j * self.rmat
|
|
self.omat = np.array([Decimal(repr(r)) for r in self.rmat.flat])
|
|
self.omat = self.omat.reshape(4, 5)
|
|
|
|
def test_python_type(self):
|
|
for x in (np.float16(1.), 1, 1., 1+0j):
|
|
assert_equal(np.mean([x]), 1.)
|
|
assert_equal(np.std([x]), 0.)
|
|
assert_equal(np.var([x]), 0.)
|
|
|
|
def test_keepdims(self):
|
|
mat = np.eye(3)
|
|
for f in self.funcs:
|
|
for axis in [0, 1]:
|
|
res = f(mat, axis=axis, keepdims=True)
|
|
assert_(res.ndim == mat.ndim)
|
|
assert_(res.shape[axis] == 1)
|
|
for axis in [None]:
|
|
res = f(mat, axis=axis, keepdims=True)
|
|
assert_(res.shape == (1, 1))
|
|
|
|
def test_out(self):
|
|
mat = np.eye(3)
|
|
for f in self.funcs:
|
|
out = np.zeros(3)
|
|
tgt = f(mat, axis=1)
|
|
res = f(mat, axis=1, out=out)
|
|
assert_almost_equal(res, out)
|
|
assert_almost_equal(res, tgt)
|
|
out = np.empty(2)
|
|
assert_raises(ValueError, f, mat, axis=1, out=out)
|
|
out = np.empty((2, 2))
|
|
assert_raises(ValueError, f, mat, axis=1, out=out)
|
|
|
|
def test_dtype_from_input(self):
|
|
|
|
icodes = np.typecodes['AllInteger']
|
|
fcodes = np.typecodes['AllFloat']
|
|
|
|
# object type
|
|
for f in self.funcs:
|
|
mat = np.array([[Decimal(1)]*3]*3)
|
|
tgt = mat.dtype.type
|
|
res = f(mat, axis=1).dtype.type
|
|
assert_(res is tgt)
|
|
# scalar case
|
|
res = type(f(mat, axis=None))
|
|
assert_(res is Decimal)
|
|
|
|
# integer types
|
|
for f in self.funcs:
|
|
for c in icodes:
|
|
mat = np.eye(3, dtype=c)
|
|
tgt = np.float64
|
|
res = f(mat, axis=1).dtype.type
|
|
assert_(res is tgt)
|
|
# scalar case
|
|
res = f(mat, axis=None).dtype.type
|
|
assert_(res is tgt)
|
|
|
|
# mean for float types
|
|
for f in [_mean]:
|
|
for c in fcodes:
|
|
mat = np.eye(3, dtype=c)
|
|
tgt = mat.dtype.type
|
|
res = f(mat, axis=1).dtype.type
|
|
assert_(res is tgt)
|
|
# scalar case
|
|
res = f(mat, axis=None).dtype.type
|
|
assert_(res is tgt)
|
|
|
|
# var, std for float types
|
|
for f in [_var, _std]:
|
|
for c in fcodes:
|
|
mat = np.eye(3, dtype=c)
|
|
# deal with complex types
|
|
tgt = mat.real.dtype.type
|
|
res = f(mat, axis=1).dtype.type
|
|
assert_(res is tgt)
|
|
# scalar case
|
|
res = f(mat, axis=None).dtype.type
|
|
assert_(res is tgt)
|
|
|
|
def test_dtype_from_dtype(self):
|
|
mat = np.eye(3)
|
|
|
|
# stats for integer types
|
|
# FIXME:
|
|
# this needs definition as there are lots places along the line
|
|
# where type casting may take place.
|
|
|
|
# for f in self.funcs:
|
|
# for c in np.typecodes['AllInteger']:
|
|
# tgt = np.dtype(c).type
|
|
# res = f(mat, axis=1, dtype=c).dtype.type
|
|
# assert_(res is tgt)
|
|
# # scalar case
|
|
# res = f(mat, axis=None, dtype=c).dtype.type
|
|
# assert_(res is tgt)
|
|
|
|
# stats for float types
|
|
for f in self.funcs:
|
|
for c in np.typecodes['AllFloat']:
|
|
tgt = np.dtype(c).type
|
|
res = f(mat, axis=1, dtype=c).dtype.type
|
|
assert_(res is tgt)
|
|
# scalar case
|
|
res = f(mat, axis=None, dtype=c).dtype.type
|
|
assert_(res is tgt)
|
|
|
|
def test_ddof(self):
|
|
for f in [_var]:
|
|
for ddof in range(3):
|
|
dim = self.rmat.shape[1]
|
|
tgt = f(self.rmat, axis=1) * dim
|
|
res = f(self.rmat, axis=1, ddof=ddof) * (dim - ddof)
|
|
for f in [_std]:
|
|
for ddof in range(3):
|
|
dim = self.rmat.shape[1]
|
|
tgt = f(self.rmat, axis=1) * np.sqrt(dim)
|
|
res = f(self.rmat, axis=1, ddof=ddof) * np.sqrt(dim - ddof)
|
|
assert_almost_equal(res, tgt)
|
|
assert_almost_equal(res, tgt)
|
|
|
|
def test_ddof_too_big(self):
|
|
dim = self.rmat.shape[1]
|
|
for f in [_var, _std]:
|
|
for ddof in range(dim, dim + 2):
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter('always')
|
|
res = f(self.rmat, axis=1, ddof=ddof)
|
|
assert_(not (res < 0).any())
|
|
assert_(len(w) > 0)
|
|
assert_(issubclass(w[0].category, RuntimeWarning))
|
|
|
|
def test_empty(self):
|
|
A = np.zeros((0, 3))
|
|
for f in self.funcs:
|
|
for axis in [0, None]:
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter('always')
|
|
assert_(np.isnan(f(A, axis=axis)).all())
|
|
assert_(len(w) > 0)
|
|
assert_(issubclass(w[0].category, RuntimeWarning))
|
|
for axis in [1]:
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter('always')
|
|
assert_equal(f(A, axis=axis), np.zeros([]))
|
|
|
|
def test_mean_values(self):
|
|
for mat in [self.rmat, self.cmat, self.omat]:
|
|
for axis in [0, 1]:
|
|
tgt = mat.sum(axis=axis)
|
|
res = _mean(mat, axis=axis) * mat.shape[axis]
|
|
assert_almost_equal(res, tgt)
|
|
for axis in [None]:
|
|
tgt = mat.sum(axis=axis)
|
|
res = _mean(mat, axis=axis) * np.prod(mat.shape)
|
|
assert_almost_equal(res, tgt)
|
|
|
|
def test_mean_float16(self):
|
|
# This fail if the sum inside mean is done in float16 instead
|
|
# of float32.
|
|
assert_(_mean(np.ones(100000, dtype='float16')) == 1)
|
|
|
|
def test_mean_axis_error(self):
|
|
# Ensure that AxisError is raised instead of IndexError when axis is
|
|
# out of bounds, see gh-15817.
|
|
with assert_raises(np.core._exceptions.AxisError):
|
|
np.arange(10).mean(axis=2)
|
|
|
|
def test_var_values(self):
|
|
for mat in [self.rmat, self.cmat, self.omat]:
|
|
for axis in [0, 1, None]:
|
|
msqr = _mean(mat * mat.conj(), axis=axis)
|
|
mean = _mean(mat, axis=axis)
|
|
tgt = msqr - mean * mean.conjugate()
|
|
res = _var(mat, axis=axis)
|
|
assert_almost_equal(res, tgt)
|
|
|
|
@pytest.mark.parametrize(('complex_dtype', 'ndec'), (
|
|
('complex64', 6),
|
|
('complex128', 7),
|
|
('clongdouble', 7),
|
|
))
|
|
def test_var_complex_values(self, complex_dtype, ndec):
|
|
# Test fast-paths for every builtin complex type
|
|
for axis in [0, 1, None]:
|
|
mat = self.cmat.copy().astype(complex_dtype)
|
|
msqr = _mean(mat * mat.conj(), axis=axis)
|
|
mean = _mean(mat, axis=axis)
|
|
tgt = msqr - mean * mean.conjugate()
|
|
res = _var(mat, axis=axis)
|
|
assert_almost_equal(res, tgt, decimal=ndec)
|
|
|
|
def test_var_dimensions(self):
|
|
# _var paths for complex number introduce additions on views that
|
|
# increase dimensions. Ensure this generalizes to higher dims
|
|
mat = np.stack([self.cmat]*3)
|
|
for axis in [0, 1, 2, -1, None]:
|
|
msqr = _mean(mat * mat.conj(), axis=axis)
|
|
mean = _mean(mat, axis=axis)
|
|
tgt = msqr - mean * mean.conjugate()
|
|
res = _var(mat, axis=axis)
|
|
assert_almost_equal(res, tgt)
|
|
|
|
def test_var_complex_byteorder(self):
|
|
# Test that var fast-path does not cause failures for complex arrays
|
|
# with non-native byteorder
|
|
cmat = self.cmat.copy().astype('complex128')
|
|
cmat_swapped = cmat.astype(cmat.dtype.newbyteorder())
|
|
assert_almost_equal(cmat.var(), cmat_swapped.var())
|
|
|
|
def test_var_axis_error(self):
|
|
# Ensure that AxisError is raised instead of IndexError when axis is
|
|
# out of bounds, see gh-15817.
|
|
with assert_raises(np.core._exceptions.AxisError):
|
|
np.arange(10).var(axis=2)
|
|
|
|
def test_std_values(self):
|
|
for mat in [self.rmat, self.cmat, self.omat]:
|
|
for axis in [0, 1, None]:
|
|
tgt = np.sqrt(_var(mat, axis=axis))
|
|
res = _std(mat, axis=axis)
|
|
assert_almost_equal(res, tgt)
|
|
|
|
def test_subclass(self):
|
|
class TestArray(np.ndarray):
|
|
def __new__(cls, data, info):
|
|
result = np.array(data)
|
|
result = result.view(cls)
|
|
result.info = info
|
|
return result
|
|
|
|
def __array_finalize__(self, obj):
|
|
self.info = getattr(obj, "info", '')
|
|
|
|
dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba')
|
|
res = dat.mean(1)
|
|
assert_(res.info == dat.info)
|
|
res = dat.std(1)
|
|
assert_(res.info == dat.info)
|
|
res = dat.var(1)
|
|
assert_(res.info == dat.info)
|
|
|
|
class TestVdot:
|
|
def test_basic(self):
|
|
dt_numeric = np.typecodes['AllFloat'] + np.typecodes['AllInteger']
|
|
dt_complex = np.typecodes['Complex']
|
|
|
|
# test real
|
|
a = np.eye(3)
|
|
for dt in dt_numeric + 'O':
|
|
b = a.astype(dt)
|
|
res = np.vdot(b, b)
|
|
assert_(np.isscalar(res))
|
|
assert_equal(np.vdot(b, b), 3)
|
|
|
|
# test complex
|
|
a = np.eye(3) * 1j
|
|
for dt in dt_complex + 'O':
|
|
b = a.astype(dt)
|
|
res = np.vdot(b, b)
|
|
assert_(np.isscalar(res))
|
|
assert_equal(np.vdot(b, b), 3)
|
|
|
|
# test boolean
|
|
b = np.eye(3, dtype=bool)
|
|
res = np.vdot(b, b)
|
|
assert_(np.isscalar(res))
|
|
assert_equal(np.vdot(b, b), True)
|
|
|
|
def test_vdot_array_order(self):
|
|
a = np.array([[1, 2], [3, 4]], order='C')
|
|
b = np.array([[1, 2], [3, 4]], order='F')
|
|
res = np.vdot(a, a)
|
|
|
|
# integer arrays are exact
|
|
assert_equal(np.vdot(a, b), res)
|
|
assert_equal(np.vdot(b, a), res)
|
|
assert_equal(np.vdot(b, b), res)
|
|
|
|
def test_vdot_uncontiguous(self):
|
|
for size in [2, 1000]:
|
|
# Different sizes match different branches in vdot.
|
|
a = np.zeros((size, 2, 2))
|
|
b = np.zeros((size, 2, 2))
|
|
a[:, 0, 0] = np.arange(size)
|
|
b[:, 0, 0] = np.arange(size) + 1
|
|
# Make a and b uncontiguous:
|
|
a = a[..., 0]
|
|
b = b[..., 0]
|
|
|
|
assert_equal(np.vdot(a, b),
|
|
np.vdot(a.flatten(), b.flatten()))
|
|
assert_equal(np.vdot(a, b.copy()),
|
|
np.vdot(a.flatten(), b.flatten()))
|
|
assert_equal(np.vdot(a.copy(), b),
|
|
np.vdot(a.flatten(), b.flatten()))
|
|
assert_equal(np.vdot(a.copy('F'), b),
|
|
np.vdot(a.flatten(), b.flatten()))
|
|
assert_equal(np.vdot(a, b.copy('F')),
|
|
np.vdot(a.flatten(), b.flatten()))
|
|
|
|
|
|
class TestDot:
|
|
def setup(self):
|
|
np.random.seed(128)
|
|
self.A = np.random.rand(4, 2)
|
|
self.b1 = np.random.rand(2, 1)
|
|
self.b2 = np.random.rand(2)
|
|
self.b3 = np.random.rand(1, 2)
|
|
self.b4 = np.random.rand(4)
|
|
self.N = 7
|
|
|
|
def test_dotmatmat(self):
|
|
A = self.A
|
|
res = np.dot(A.transpose(), A)
|
|
tgt = np.array([[1.45046013, 0.86323640],
|
|
[0.86323640, 0.84934569]])
|
|
assert_almost_equal(res, tgt, decimal=self.N)
|
|
|
|
def test_dotmatvec(self):
|
|
A, b1 = self.A, self.b1
|
|
res = np.dot(A, b1)
|
|
tgt = np.array([[0.32114320], [0.04889721],
|
|
[0.15696029], [0.33612621]])
|
|
assert_almost_equal(res, tgt, decimal=self.N)
|
|
|
|
def test_dotmatvec2(self):
|
|
A, b2 = self.A, self.b2
|
|
res = np.dot(A, b2)
|
|
tgt = np.array([0.29677940, 0.04518649, 0.14468333, 0.31039293])
|
|
assert_almost_equal(res, tgt, decimal=self.N)
|
|
|
|
def test_dotvecmat(self):
|
|
A, b4 = self.A, self.b4
|
|
res = np.dot(b4, A)
|
|
tgt = np.array([1.23495091, 1.12222648])
|
|
assert_almost_equal(res, tgt, decimal=self.N)
|
|
|
|
def test_dotvecmat2(self):
|
|
b3, A = self.b3, self.A
|
|
res = np.dot(b3, A.transpose())
|
|
tgt = np.array([[0.58793804, 0.08957460, 0.30605758, 0.62716383]])
|
|
assert_almost_equal(res, tgt, decimal=self.N)
|
|
|
|
def test_dotvecmat3(self):
|
|
A, b4 = self.A, self.b4
|
|
res = np.dot(A.transpose(), b4)
|
|
tgt = np.array([1.23495091, 1.12222648])
|
|
assert_almost_equal(res, tgt, decimal=self.N)
|
|
|
|
def test_dotvecvecouter(self):
|
|
b1, b3 = self.b1, self.b3
|
|
res = np.dot(b1, b3)
|
|
tgt = np.array([[0.20128610, 0.08400440], [0.07190947, 0.03001058]])
|
|
assert_almost_equal(res, tgt, decimal=self.N)
|
|
|
|
def test_dotvecvecinner(self):
|
|
b1, b3 = self.b1, self.b3
|
|
res = np.dot(b3, b1)
|
|
tgt = np.array([[ 0.23129668]])
|
|
assert_almost_equal(res, tgt, decimal=self.N)
|
|
|
|
def test_dotcolumnvect1(self):
|
|
b1 = np.ones((3, 1))
|
|
b2 = [5.3]
|
|
res = np.dot(b1, b2)
|
|
tgt = np.array([5.3, 5.3, 5.3])
|
|
assert_almost_equal(res, tgt, decimal=self.N)
|
|
|
|
def test_dotcolumnvect2(self):
|
|
b1 = np.ones((3, 1)).transpose()
|
|
b2 = [6.2]
|
|
res = np.dot(b2, b1)
|
|
tgt = np.array([6.2, 6.2, 6.2])
|
|
assert_almost_equal(res, tgt, decimal=self.N)
|
|
|
|
def test_dotvecscalar(self):
|
|
np.random.seed(100)
|
|
b1 = np.random.rand(1, 1)
|
|
b2 = np.random.rand(1, 4)
|
|
res = np.dot(b1, b2)
|
|
tgt = np.array([[0.15126730, 0.23068496, 0.45905553, 0.00256425]])
|
|
assert_almost_equal(res, tgt, decimal=self.N)
|
|
|
|
def test_dotvecscalar2(self):
|
|
np.random.seed(100)
|
|
b1 = np.random.rand(4, 1)
|
|
b2 = np.random.rand(1, 1)
|
|
res = np.dot(b1, b2)
|
|
tgt = np.array([[0.00256425],[0.00131359],[0.00200324],[ 0.00398638]])
|
|
assert_almost_equal(res, tgt, decimal=self.N)
|
|
|
|
def test_all(self):
|
|
dims = [(), (1,), (1, 1)]
|
|
dout = [(), (1,), (1, 1), (1,), (), (1,), (1, 1), (1,), (1, 1)]
|
|
for dim, (dim1, dim2) in zip(dout, itertools.product(dims, dims)):
|
|
b1 = np.zeros(dim1)
|
|
b2 = np.zeros(dim2)
|
|
res = np.dot(b1, b2)
|
|
tgt = np.zeros(dim)
|
|
assert_(res.shape == tgt.shape)
|
|
assert_almost_equal(res, tgt, decimal=self.N)
|
|
|
|
def test_vecobject(self):
|
|
class Vec:
|
|
def __init__(self, sequence=None):
|
|
if sequence is None:
|
|
sequence = []
|
|
self.array = np.array(sequence)
|
|
|
|
def __add__(self, other):
|
|
out = Vec()
|
|
out.array = self.array + other.array
|
|
return out
|
|
|
|
def __sub__(self, other):
|
|
out = Vec()
|
|
out.array = self.array - other.array
|
|
return out
|
|
|
|
def __mul__(self, other): # with scalar
|
|
out = Vec(self.array.copy())
|
|
out.array *= other
|
|
return out
|
|
|
|
def __rmul__(self, other):
|
|
return self*other
|
|
|
|
U_non_cont = np.transpose([[1., 1.], [1., 2.]])
|
|
U_cont = np.ascontiguousarray(U_non_cont)
|
|
x = np.array([Vec([1., 0.]), Vec([0., 1.])])
|
|
zeros = np.array([Vec([0., 0.]), Vec([0., 0.])])
|
|
zeros_test = np.dot(U_cont, x) - np.dot(U_non_cont, x)
|
|
assert_equal(zeros[0].array, zeros_test[0].array)
|
|
assert_equal(zeros[1].array, zeros_test[1].array)
|
|
|
|
def test_dot_2args(self):
|
|
from numpy.core.multiarray import dot
|
|
|
|
a = np.array([[1, 2], [3, 4]], dtype=float)
|
|
b = np.array([[1, 0], [1, 1]], dtype=float)
|
|
c = np.array([[3, 2], [7, 4]], dtype=float)
|
|
|
|
d = dot(a, b)
|
|
assert_allclose(c, d)
|
|
|
|
def test_dot_3args(self):
|
|
from numpy.core.multiarray import dot
|
|
|
|
np.random.seed(22)
|
|
f = np.random.random_sample((1024, 16))
|
|
v = np.random.random_sample((16, 32))
|
|
|
|
r = np.empty((1024, 32))
|
|
for i in range(12):
|
|
dot(f, v, r)
|
|
if HAS_REFCOUNT:
|
|
assert_equal(sys.getrefcount(r), 2)
|
|
r2 = dot(f, v, out=None)
|
|
assert_array_equal(r2, r)
|
|
assert_(r is dot(f, v, out=r))
|
|
|
|
v = v[:, 0].copy() # v.shape == (16,)
|
|
r = r[:, 0].copy() # r.shape == (1024,)
|
|
r2 = dot(f, v)
|
|
assert_(r is dot(f, v, r))
|
|
assert_array_equal(r2, r)
|
|
|
|
def test_dot_3args_errors(self):
|
|
from numpy.core.multiarray import dot
|
|
|
|
np.random.seed(22)
|
|
f = np.random.random_sample((1024, 16))
|
|
v = np.random.random_sample((16, 32))
|
|
|
|
r = np.empty((1024, 31))
|
|
assert_raises(ValueError, dot, f, v, r)
|
|
|
|
r = np.empty((1024,))
|
|
assert_raises(ValueError, dot, f, v, r)
|
|
|
|
r = np.empty((32,))
|
|
assert_raises(ValueError, dot, f, v, r)
|
|
|
|
r = np.empty((32, 1024))
|
|
assert_raises(ValueError, dot, f, v, r)
|
|
assert_raises(ValueError, dot, f, v, r.T)
|
|
|
|
r = np.empty((1024, 64))
|
|
assert_raises(ValueError, dot, f, v, r[:, ::2])
|
|
assert_raises(ValueError, dot, f, v, r[:, :32])
|
|
|
|
r = np.empty((1024, 32), dtype=np.float32)
|
|
assert_raises(ValueError, dot, f, v, r)
|
|
|
|
r = np.empty((1024, 32), dtype=int)
|
|
assert_raises(ValueError, dot, f, v, r)
|
|
|
|
def test_dot_array_order(self):
|
|
a = np.array([[1, 2], [3, 4]], order='C')
|
|
b = np.array([[1, 2], [3, 4]], order='F')
|
|
res = np.dot(a, a)
|
|
|
|
# integer arrays are exact
|
|
assert_equal(np.dot(a, b), res)
|
|
assert_equal(np.dot(b, a), res)
|
|
assert_equal(np.dot(b, b), res)
|
|
|
|
def test_accelerate_framework_sgemv_fix(self):
|
|
|
|
def aligned_array(shape, align, dtype, order='C'):
|
|
d = dtype(0)
|
|
N = np.prod(shape)
|
|
tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8)
|
|
address = tmp.__array_interface__["data"][0]
|
|
for offset in range(align):
|
|
if (address + offset) % align == 0:
|
|
break
|
|
tmp = tmp[offset:offset+N*d.nbytes].view(dtype=dtype)
|
|
return tmp.reshape(shape, order=order)
|
|
|
|
def as_aligned(arr, align, dtype, order='C'):
|
|
aligned = aligned_array(arr.shape, align, dtype, order)
|
|
aligned[:] = arr[:]
|
|
return aligned
|
|
|
|
def assert_dot_close(A, X, desired):
|
|
assert_allclose(np.dot(A, X), desired, rtol=1e-5, atol=1e-7)
|
|
|
|
m = aligned_array(100, 15, np.float32)
|
|
s = aligned_array((100, 100), 15, np.float32)
|
|
np.dot(s, m) # this will always segfault if the bug is present
|
|
|
|
testdata = itertools.product((15,32), (10000,), (200,89), ('C','F'))
|
|
for align, m, n, a_order in testdata:
|
|
# Calculation in double precision
|
|
A_d = np.random.rand(m, n)
|
|
X_d = np.random.rand(n)
|
|
desired = np.dot(A_d, X_d)
|
|
# Calculation with aligned single precision
|
|
A_f = as_aligned(A_d, align, np.float32, order=a_order)
|
|
X_f = as_aligned(X_d, align, np.float32)
|
|
assert_dot_close(A_f, X_f, desired)
|
|
# Strided A rows
|
|
A_d_2 = A_d[::2]
|
|
desired = np.dot(A_d_2, X_d)
|
|
A_f_2 = A_f[::2]
|
|
assert_dot_close(A_f_2, X_f, desired)
|
|
# Strided A columns, strided X vector
|
|
A_d_22 = A_d_2[:, ::2]
|
|
X_d_2 = X_d[::2]
|
|
desired = np.dot(A_d_22, X_d_2)
|
|
A_f_22 = A_f_2[:, ::2]
|
|
X_f_2 = X_f[::2]
|
|
assert_dot_close(A_f_22, X_f_2, desired)
|
|
# Check the strides are as expected
|
|
if a_order == 'F':
|
|
assert_equal(A_f_22.strides, (8, 8 * m))
|
|
else:
|
|
assert_equal(A_f_22.strides, (8 * n, 8))
|
|
assert_equal(X_f_2.strides, (8,))
|
|
# Strides in A rows + cols only
|
|
X_f_2c = as_aligned(X_f_2, align, np.float32)
|
|
assert_dot_close(A_f_22, X_f_2c, desired)
|
|
# Strides just in A cols
|
|
A_d_12 = A_d[:, ::2]
|
|
desired = np.dot(A_d_12, X_d_2)
|
|
A_f_12 = A_f[:, ::2]
|
|
assert_dot_close(A_f_12, X_f_2c, desired)
|
|
# Strides in A cols and X
|
|
assert_dot_close(A_f_12, X_f_2, desired)
|
|
|
|
|
|
class MatmulCommon:
|
|
"""Common tests for '@' operator and numpy.matmul.
|
|
|
|
"""
|
|
# Should work with these types. Will want to add
|
|
# "O" at some point
|
|
types = "?bhilqBHILQefdgFDGO"
|
|
|
|
def test_exceptions(self):
|
|
dims = [
|
|
((1,), (2,)), # mismatched vector vector
|
|
((2, 1,), (2,)), # mismatched matrix vector
|
|
((2,), (1, 2)), # mismatched vector matrix
|
|
((1, 2), (3, 1)), # mismatched matrix matrix
|
|
((1,), ()), # vector scalar
|
|
((), (1)), # scalar vector
|
|
((1, 1), ()), # matrix scalar
|
|
((), (1, 1)), # scalar matrix
|
|
((2, 2, 1), (3, 1, 2)), # cannot broadcast
|
|
]
|
|
|
|
for dt, (dm1, dm2) in itertools.product(self.types, dims):
|
|
a = np.ones(dm1, dtype=dt)
|
|
b = np.ones(dm2, dtype=dt)
|
|
assert_raises(ValueError, self.matmul, a, b)
|
|
|
|
def test_shapes(self):
|
|
dims = [
|
|
((1, 1), (2, 1, 1)), # broadcast first argument
|
|
((2, 1, 1), (1, 1)), # broadcast second argument
|
|
((2, 1, 1), (2, 1, 1)), # matrix stack sizes match
|
|
]
|
|
|
|
for dt, (dm1, dm2) in itertools.product(self.types, dims):
|
|
a = np.ones(dm1, dtype=dt)
|
|
b = np.ones(dm2, dtype=dt)
|
|
res = self.matmul(a, b)
|
|
assert_(res.shape == (2, 1, 1))
|
|
|
|
# vector vector returns scalars.
|
|
for dt in self.types:
|
|
a = np.ones((2,), dtype=dt)
|
|
b = np.ones((2,), dtype=dt)
|
|
c = self.matmul(a, b)
|
|
assert_(np.array(c).shape == ())
|
|
|
|
def test_result_types(self):
|
|
mat = np.ones((1,1))
|
|
vec = np.ones((1,))
|
|
for dt in self.types:
|
|
m = mat.astype(dt)
|
|
v = vec.astype(dt)
|
|
for arg in [(m, v), (v, m), (m, m)]:
|
|
res = self.matmul(*arg)
|
|
assert_(res.dtype == dt)
|
|
|
|
# vector vector returns scalars
|
|
if dt != "O":
|
|
res = self.matmul(v, v)
|
|
assert_(type(res) is np.dtype(dt).type)
|
|
|
|
def test_scalar_output(self):
|
|
vec1 = np.array([2])
|
|
vec2 = np.array([3, 4]).reshape(1, -1)
|
|
tgt = np.array([6, 8])
|
|
for dt in self.types[1:]:
|
|
v1 = vec1.astype(dt)
|
|
v2 = vec2.astype(dt)
|
|
res = self.matmul(v1, v2)
|
|
assert_equal(res, tgt)
|
|
res = self.matmul(v2.T, v1)
|
|
assert_equal(res, tgt)
|
|
|
|
# boolean type
|
|
vec = np.array([True, True], dtype='?').reshape(1, -1)
|
|
res = self.matmul(vec[:, 0], vec)
|
|
assert_equal(res, True)
|
|
|
|
def test_vector_vector_values(self):
|
|
vec1 = np.array([1, 2])
|
|
vec2 = np.array([3, 4]).reshape(-1, 1)
|
|
tgt1 = np.array([11])
|
|
tgt2 = np.array([[3, 6], [4, 8]])
|
|
for dt in self.types[1:]:
|
|
v1 = vec1.astype(dt)
|
|
v2 = vec2.astype(dt)
|
|
res = self.matmul(v1, v2)
|
|
assert_equal(res, tgt1)
|
|
# no broadcast, we must make v1 into a 2d ndarray
|
|
res = self.matmul(v2, v1.reshape(1, -1))
|
|
assert_equal(res, tgt2)
|
|
|
|
# boolean type
|
|
vec = np.array([True, True], dtype='?')
|
|
res = self.matmul(vec, vec)
|
|
assert_equal(res, True)
|
|
|
|
def test_vector_matrix_values(self):
|
|
vec = np.array([1, 2])
|
|
mat1 = np.array([[1, 2], [3, 4]])
|
|
mat2 = np.stack([mat1]*2, axis=0)
|
|
tgt1 = np.array([7, 10])
|
|
tgt2 = np.stack([tgt1]*2, axis=0)
|
|
for dt in self.types[1:]:
|
|
v = vec.astype(dt)
|
|
m1 = mat1.astype(dt)
|
|
m2 = mat2.astype(dt)
|
|
res = self.matmul(v, m1)
|
|
assert_equal(res, tgt1)
|
|
res = self.matmul(v, m2)
|
|
assert_equal(res, tgt2)
|
|
|
|
# boolean type
|
|
vec = np.array([True, False])
|
|
mat1 = np.array([[True, False], [False, True]])
|
|
mat2 = np.stack([mat1]*2, axis=0)
|
|
tgt1 = np.array([True, False])
|
|
tgt2 = np.stack([tgt1]*2, axis=0)
|
|
|
|
res = self.matmul(vec, mat1)
|
|
assert_equal(res, tgt1)
|
|
res = self.matmul(vec, mat2)
|
|
assert_equal(res, tgt2)
|
|
|
|
def test_matrix_vector_values(self):
|
|
vec = np.array([1, 2])
|
|
mat1 = np.array([[1, 2], [3, 4]])
|
|
mat2 = np.stack([mat1]*2, axis=0)
|
|
tgt1 = np.array([5, 11])
|
|
tgt2 = np.stack([tgt1]*2, axis=0)
|
|
for dt in self.types[1:]:
|
|
v = vec.astype(dt)
|
|
m1 = mat1.astype(dt)
|
|
m2 = mat2.astype(dt)
|
|
res = self.matmul(m1, v)
|
|
assert_equal(res, tgt1)
|
|
res = self.matmul(m2, v)
|
|
assert_equal(res, tgt2)
|
|
|
|
# boolean type
|
|
vec = np.array([True, False])
|
|
mat1 = np.array([[True, False], [False, True]])
|
|
mat2 = np.stack([mat1]*2, axis=0)
|
|
tgt1 = np.array([True, False])
|
|
tgt2 = np.stack([tgt1]*2, axis=0)
|
|
|
|
res = self.matmul(vec, mat1)
|
|
assert_equal(res, tgt1)
|
|
res = self.matmul(vec, mat2)
|
|
assert_equal(res, tgt2)
|
|
|
|
def test_matrix_matrix_values(self):
|
|
mat1 = np.array([[1, 2], [3, 4]])
|
|
mat2 = np.array([[1, 0], [1, 1]])
|
|
mat12 = np.stack([mat1, mat2], axis=0)
|
|
mat21 = np.stack([mat2, mat1], axis=0)
|
|
tgt11 = np.array([[7, 10], [15, 22]])
|
|
tgt12 = np.array([[3, 2], [7, 4]])
|
|
tgt21 = np.array([[1, 2], [4, 6]])
|
|
tgt12_21 = np.stack([tgt12, tgt21], axis=0)
|
|
tgt11_12 = np.stack((tgt11, tgt12), axis=0)
|
|
tgt11_21 = np.stack((tgt11, tgt21), axis=0)
|
|
for dt in self.types[1:]:
|
|
m1 = mat1.astype(dt)
|
|
m2 = mat2.astype(dt)
|
|
m12 = mat12.astype(dt)
|
|
m21 = mat21.astype(dt)
|
|
|
|
# matrix @ matrix
|
|
res = self.matmul(m1, m2)
|
|
assert_equal(res, tgt12)
|
|
res = self.matmul(m2, m1)
|
|
assert_equal(res, tgt21)
|
|
|
|
# stacked @ matrix
|
|
res = self.matmul(m12, m1)
|
|
assert_equal(res, tgt11_21)
|
|
|
|
# matrix @ stacked
|
|
res = self.matmul(m1, m12)
|
|
assert_equal(res, tgt11_12)
|
|
|
|
# stacked @ stacked
|
|
res = self.matmul(m12, m21)
|
|
assert_equal(res, tgt12_21)
|
|
|
|
# boolean type
|
|
m1 = np.array([[1, 1], [0, 0]], dtype=np.bool_)
|
|
m2 = np.array([[1, 0], [1, 1]], dtype=np.bool_)
|
|
m12 = np.stack([m1, m2], axis=0)
|
|
m21 = np.stack([m2, m1], axis=0)
|
|
tgt11 = m1
|
|
tgt12 = m1
|
|
tgt21 = np.array([[1, 1], [1, 1]], dtype=np.bool_)
|
|
tgt12_21 = np.stack([tgt12, tgt21], axis=0)
|
|
tgt11_12 = np.stack((tgt11, tgt12), axis=0)
|
|
tgt11_21 = np.stack((tgt11, tgt21), axis=0)
|
|
|
|
# matrix @ matrix
|
|
res = self.matmul(m1, m2)
|
|
assert_equal(res, tgt12)
|
|
res = self.matmul(m2, m1)
|
|
assert_equal(res, tgt21)
|
|
|
|
# stacked @ matrix
|
|
res = self.matmul(m12, m1)
|
|
assert_equal(res, tgt11_21)
|
|
|
|
# matrix @ stacked
|
|
res = self.matmul(m1, m12)
|
|
assert_equal(res, tgt11_12)
|
|
|
|
# stacked @ stacked
|
|
res = self.matmul(m12, m21)
|
|
assert_equal(res, tgt12_21)
|
|
|
|
|
|
class TestMatmul(MatmulCommon):
|
|
matmul = np.matmul
|
|
|
|
def test_out_arg(self):
|
|
a = np.ones((5, 2), dtype=float)
|
|
b = np.array([[1, 3], [5, 7]], dtype=float)
|
|
tgt = np.dot(a, b)
|
|
|
|
# test as positional argument
|
|
msg = "out positional argument"
|
|
out = np.zeros((5, 2), dtype=float)
|
|
self.matmul(a, b, out)
|
|
assert_array_equal(out, tgt, err_msg=msg)
|
|
|
|
# test as keyword argument
|
|
msg = "out keyword argument"
|
|
out = np.zeros((5, 2), dtype=float)
|
|
self.matmul(a, b, out=out)
|
|
assert_array_equal(out, tgt, err_msg=msg)
|
|
|
|
# test out with not allowed type cast (safe casting)
|
|
msg = "Cannot cast ufunc .* output"
|
|
out = np.zeros((5, 2), dtype=np.int32)
|
|
assert_raises_regex(TypeError, msg, self.matmul, a, b, out=out)
|
|
|
|
# test out with type upcast to complex
|
|
out = np.zeros((5, 2), dtype=np.complex128)
|
|
c = self.matmul(a, b, out=out)
|
|
assert_(c is out)
|
|
with suppress_warnings() as sup:
|
|
sup.filter(np.ComplexWarning, '')
|
|
c = c.astype(tgt.dtype)
|
|
assert_array_equal(c, tgt)
|
|
|
|
def test_out_contiguous(self):
|
|
a = np.ones((5, 2), dtype=float)
|
|
b = np.array([[1, 3], [5, 7]], dtype=float)
|
|
v = np.array([1, 3], dtype=float)
|
|
tgt = np.dot(a, b)
|
|
tgt_mv = np.dot(a, v)
|
|
|
|
# test out non-contiguous
|
|
out = np.ones((5, 2, 2), dtype=float)
|
|
c = self.matmul(a, b, out=out[..., 0])
|
|
assert c.base is out
|
|
assert_array_equal(c, tgt)
|
|
c = self.matmul(a, v, out=out[:, 0, 0])
|
|
assert_array_equal(c, tgt_mv)
|
|
c = self.matmul(v, a.T, out=out[:, 0, 0])
|
|
assert_array_equal(c, tgt_mv)
|
|
|
|
# test out contiguous in only last dim
|
|
out = np.ones((10, 2), dtype=float)
|
|
c = self.matmul(a, b, out=out[::2, :])
|
|
assert_array_equal(c, tgt)
|
|
|
|
# test transposes of out, args
|
|
out = np.ones((5, 2), dtype=float)
|
|
c = self.matmul(b.T, a.T, out=out.T)
|
|
assert_array_equal(out, tgt)
|
|
|
|
m1 = np.arange(15.).reshape(5, 3)
|
|
m2 = np.arange(21.).reshape(3, 7)
|
|
m3 = np.arange(30.).reshape(5, 6)[:, ::2] # non-contiguous
|
|
vc = np.arange(10.)
|
|
vr = np.arange(6.)
|
|
m0 = np.zeros((3, 0))
|
|
@pytest.mark.parametrize('args', (
|
|
# matrix-matrix
|
|
(m1, m2), (m2.T, m1.T), (m2.T.copy(), m1.T), (m2.T, m1.T.copy()),
|
|
# matrix-matrix-transpose, contiguous and non
|
|
(m1, m1.T), (m1.T, m1), (m1, m3.T), (m3, m1.T),
|
|
(m3, m3.T), (m3.T, m3),
|
|
# matrix-matrix non-contiguous
|
|
(m3, m2), (m2.T, m3.T), (m2.T.copy(), m3.T),
|
|
# vector-matrix, matrix-vector, contiguous
|
|
(m1, vr[:3]), (vc[:5], m1), (m1.T, vc[:5]), (vr[:3], m1.T),
|
|
# vector-matrix, matrix-vector, vector non-contiguous
|
|
(m1, vr[::2]), (vc[::2], m1), (m1.T, vc[::2]), (vr[::2], m1.T),
|
|
# vector-matrix, matrix-vector, matrix non-contiguous
|
|
(m3, vr[:3]), (vc[:5], m3), (m3.T, vc[:5]), (vr[:3], m3.T),
|
|
# vector-matrix, matrix-vector, both non-contiguous
|
|
(m3, vr[::2]), (vc[::2], m3), (m3.T, vc[::2]), (vr[::2], m3.T),
|
|
# size == 0
|
|
(m0, m0.T), (m0.T, m0), (m1, m0), (m0.T, m1.T),
|
|
))
|
|
def test_dot_equivalent(self, args):
|
|
r1 = np.matmul(*args)
|
|
r2 = np.dot(*args)
|
|
assert_equal(r1, r2)
|
|
|
|
r3 = np.matmul(args[0].copy(), args[1].copy())
|
|
assert_equal(r1, r3)
|
|
|
|
def test_matmul_object(self):
|
|
import fractions
|
|
|
|
f = np.vectorize(fractions.Fraction)
|
|
def random_ints():
|
|
return np.random.randint(1, 1000, size=(10, 3, 3))
|
|
M1 = f(random_ints(), random_ints())
|
|
M2 = f(random_ints(), random_ints())
|
|
|
|
M3 = self.matmul(M1, M2)
|
|
|
|
[N1, N2, N3] = [a.astype(float) for a in [M1, M2, M3]]
|
|
|
|
assert_allclose(N3, self.matmul(N1, N2))
|
|
|
|
def test_matmul_object_type_scalar(self):
|
|
from fractions import Fraction as F
|
|
v = np.array([F(2,3), F(5,7)])
|
|
res = self.matmul(v, v)
|
|
assert_(type(res) is F)
|
|
|
|
def test_matmul_empty(self):
|
|
a = np.empty((3, 0), dtype=object)
|
|
b = np.empty((0, 3), dtype=object)
|
|
c = np.zeros((3, 3))
|
|
assert_array_equal(np.matmul(a, b), c)
|
|
|
|
def test_matmul_exception_multiply(self):
|
|
# test that matmul fails if `__mul__` is missing
|
|
class add_not_multiply():
|
|
def __add__(self, other):
|
|
return self
|
|
a = np.full((3,3), add_not_multiply())
|
|
with assert_raises(TypeError):
|
|
b = np.matmul(a, a)
|
|
|
|
def test_matmul_exception_add(self):
|
|
# test that matmul fails if `__add__` is missing
|
|
class multiply_not_add():
|
|
def __mul__(self, other):
|
|
return self
|
|
a = np.full((3,3), multiply_not_add())
|
|
with assert_raises(TypeError):
|
|
b = np.matmul(a, a)
|
|
|
|
def test_matmul_bool(self):
|
|
# gh-14439
|
|
a = np.array([[1, 0],[1, 1]], dtype=bool)
|
|
assert np.max(a.view(np.uint8)) == 1
|
|
b = np.matmul(a, a)
|
|
# matmul with boolean output should always be 0, 1
|
|
assert np.max(b.view(np.uint8)) == 1
|
|
|
|
rg = np.random.default_rng(np.random.PCG64(43))
|
|
d = rg.integers(2, size=4*5, dtype=np.int8)
|
|
d = d.reshape(4, 5) > 0
|
|
out1 = np.matmul(d, d.reshape(5, 4))
|
|
out2 = np.dot(d, d.reshape(5, 4))
|
|
assert_equal(out1, out2)
|
|
|
|
c = np.matmul(np.zeros((2, 0), dtype=bool), np.zeros(0, dtype=bool))
|
|
assert not np.any(c)
|
|
|
|
|
|
class TestMatmulOperator(MatmulCommon):
|
|
import operator
|
|
matmul = operator.matmul
|
|
|
|
def test_array_priority_override(self):
|
|
|
|
class A:
|
|
__array_priority__ = 1000
|
|
|
|
def __matmul__(self, other):
|
|
return "A"
|
|
|
|
def __rmatmul__(self, other):
|
|
return "A"
|
|
|
|
a = A()
|
|
b = np.ones(2)
|
|
assert_equal(self.matmul(a, b), "A")
|
|
assert_equal(self.matmul(b, a), "A")
|
|
|
|
def test_matmul_raises(self):
|
|
assert_raises(TypeError, self.matmul, np.int8(5), np.int8(5))
|
|
assert_raises(TypeError, self.matmul, np.void(b'abc'), np.void(b'abc'))
|
|
assert_raises(ValueError, self.matmul, np.arange(10), np.void(b'abc'))
|
|
|
|
def test_matmul_inplace():
|
|
# It would be nice to support in-place matmul eventually, but for now
|
|
# we don't have a working implementation, so better just to error out
|
|
# and nudge people to writing "a = a @ b".
|
|
a = np.eye(3)
|
|
b = np.eye(3)
|
|
assert_raises(TypeError, a.__imatmul__, b)
|
|
import operator
|
|
assert_raises(TypeError, operator.imatmul, a, b)
|
|
assert_raises(TypeError, exec, "a @= b", globals(), locals())
|
|
|
|
def test_matmul_axes():
|
|
a = np.arange(3*4*5).reshape(3, 4, 5)
|
|
c = np.matmul(a, a, axes=[(-2, -1), (-1, -2), (1, 2)])
|
|
assert c.shape == (3, 4, 4)
|
|
d = np.matmul(a, a, axes=[(-2, -1), (-1, -2), (0, 1)])
|
|
assert d.shape == (4, 4, 3)
|
|
e = np.swapaxes(d, 0, 2)
|
|
assert_array_equal(e, c)
|
|
f = np.matmul(a, np.arange(3), axes=[(1, 0), (0), (0)])
|
|
assert f.shape == (4, 5)
|
|
|
|
|
|
class TestInner:
|
|
|
|
def test_inner_type_mismatch(self):
|
|
c = 1.
|
|
A = np.array((1,1), dtype='i,i')
|
|
|
|
assert_raises(TypeError, np.inner, c, A)
|
|
assert_raises(TypeError, np.inner, A, c)
|
|
|
|
def test_inner_scalar_and_vector(self):
|
|
for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
|
|
sca = np.array(3, dtype=dt)[()]
|
|
vec = np.array([1, 2], dtype=dt)
|
|
desired = np.array([3, 6], dtype=dt)
|
|
assert_equal(np.inner(vec, sca), desired)
|
|
assert_equal(np.inner(sca, vec), desired)
|
|
|
|
def test_vecself(self):
|
|
# Ticket 844.
|
|
# Inner product of a vector with itself segfaults or give
|
|
# meaningless result
|
|
a = np.zeros(shape=(1, 80), dtype=np.float64)
|
|
p = np.inner(a, a)
|
|
assert_almost_equal(p, 0, decimal=14)
|
|
|
|
def test_inner_product_with_various_contiguities(self):
|
|
# github issue 6532
|
|
for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
|
|
# check an inner product involving a matrix transpose
|
|
A = np.array([[1, 2], [3, 4]], dtype=dt)
|
|
B = np.array([[1, 3], [2, 4]], dtype=dt)
|
|
C = np.array([1, 1], dtype=dt)
|
|
desired = np.array([4, 6], dtype=dt)
|
|
assert_equal(np.inner(A.T, C), desired)
|
|
assert_equal(np.inner(C, A.T), desired)
|
|
assert_equal(np.inner(B, C), desired)
|
|
assert_equal(np.inner(C, B), desired)
|
|
# check a matrix product
|
|
desired = np.array([[7, 10], [15, 22]], dtype=dt)
|
|
assert_equal(np.inner(A, B), desired)
|
|
# check the syrk vs. gemm paths
|
|
desired = np.array([[5, 11], [11, 25]], dtype=dt)
|
|
assert_equal(np.inner(A, A), desired)
|
|
assert_equal(np.inner(A, A.copy()), desired)
|
|
# check an inner product involving an aliased and reversed view
|
|
a = np.arange(5).astype(dt)
|
|
b = a[::-1]
|
|
desired = np.array(10, dtype=dt).item()
|
|
assert_equal(np.inner(b, a), desired)
|
|
|
|
def test_3d_tensor(self):
|
|
for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
|
|
a = np.arange(24).reshape(2,3,4).astype(dt)
|
|
b = np.arange(24, 48).reshape(2,3,4).astype(dt)
|
|
desired = np.array(
|
|
[[[[ 158, 182, 206],
|
|
[ 230, 254, 278]],
|
|
|
|
[[ 566, 654, 742],
|
|
[ 830, 918, 1006]],
|
|
|
|
[[ 974, 1126, 1278],
|
|
[1430, 1582, 1734]]],
|
|
|
|
[[[1382, 1598, 1814],
|
|
[2030, 2246, 2462]],
|
|
|
|
[[1790, 2070, 2350],
|
|
[2630, 2910, 3190]],
|
|
|
|
[[2198, 2542, 2886],
|
|
[3230, 3574, 3918]]]],
|
|
dtype=dt
|
|
)
|
|
assert_equal(np.inner(a, b), desired)
|
|
assert_equal(np.inner(b, a).transpose(2,3,0,1), desired)
|
|
|
|
|
|
class TestAlen:
|
|
def test_basic(self):
|
|
with pytest.warns(DeprecationWarning):
|
|
m = np.array([1, 2, 3])
|
|
assert_equal(np.alen(m), 3)
|
|
|
|
m = np.array([[1, 2, 3], [4, 5, 7]])
|
|
assert_equal(np.alen(m), 2)
|
|
|
|
m = [1, 2, 3]
|
|
assert_equal(np.alen(m), 3)
|
|
|
|
m = [[1, 2, 3], [4, 5, 7]]
|
|
assert_equal(np.alen(m), 2)
|
|
|
|
def test_singleton(self):
|
|
with pytest.warns(DeprecationWarning):
|
|
assert_equal(np.alen(5), 1)
|
|
|
|
|
|
class TestChoose:
|
|
def setup(self):
|
|
self.x = 2*np.ones((3,), dtype=int)
|
|
self.y = 3*np.ones((3,), dtype=int)
|
|
self.x2 = 2*np.ones((2, 3), dtype=int)
|
|
self.y2 = 3*np.ones((2, 3), dtype=int)
|
|
self.ind = [0, 0, 1]
|
|
|
|
def test_basic(self):
|
|
A = np.choose(self.ind, (self.x, self.y))
|
|
assert_equal(A, [2, 2, 3])
|
|
|
|
def test_broadcast1(self):
|
|
A = np.choose(self.ind, (self.x2, self.y2))
|
|
assert_equal(A, [[2, 2, 3], [2, 2, 3]])
|
|
|
|
def test_broadcast2(self):
|
|
A = np.choose(self.ind, (self.x, self.y2))
|
|
assert_equal(A, [[2, 2, 3], [2, 2, 3]])
|
|
|
|
@pytest.mark.parametrize("ops",
|
|
[(1000, np.array([1], dtype=np.uint8)),
|
|
(-1, np.array([1], dtype=np.uint8)),
|
|
(1., np.float32(3)),
|
|
(1., np.array([3], dtype=np.float32))],)
|
|
def test_output_dtype(self, ops):
|
|
expected_dt = np.result_type(*ops)
|
|
assert(np.choose([0], ops).dtype == expected_dt)
|
|
|
|
|
|
class TestRepeat:
|
|
def setup(self):
|
|
self.m = np.array([1, 2, 3, 4, 5, 6])
|
|
self.m_rect = self.m.reshape((2, 3))
|
|
|
|
def test_basic(self):
|
|
A = np.repeat(self.m, [1, 3, 2, 1, 1, 2])
|
|
assert_equal(A, [1, 2, 2, 2, 3,
|
|
3, 4, 5, 6, 6])
|
|
|
|
def test_broadcast1(self):
|
|
A = np.repeat(self.m, 2)
|
|
assert_equal(A, [1, 1, 2, 2, 3, 3,
|
|
4, 4, 5, 5, 6, 6])
|
|
|
|
def test_axis_spec(self):
|
|
A = np.repeat(self.m_rect, [2, 1], axis=0)
|
|
assert_equal(A, [[1, 2, 3],
|
|
[1, 2, 3],
|
|
[4, 5, 6]])
|
|
|
|
A = np.repeat(self.m_rect, [1, 3, 2], axis=1)
|
|
assert_equal(A, [[1, 2, 2, 2, 3, 3],
|
|
[4, 5, 5, 5, 6, 6]])
|
|
|
|
def test_broadcast2(self):
|
|
A = np.repeat(self.m_rect, 2, axis=0)
|
|
assert_equal(A, [[1, 2, 3],
|
|
[1, 2, 3],
|
|
[4, 5, 6],
|
|
[4, 5, 6]])
|
|
|
|
A = np.repeat(self.m_rect, 2, axis=1)
|
|
assert_equal(A, [[1, 1, 2, 2, 3, 3],
|
|
[4, 4, 5, 5, 6, 6]])
|
|
|
|
|
|
# TODO: test for multidimensional
|
|
NEIGH_MODE = {'zero': 0, 'one': 1, 'constant': 2, 'circular': 3, 'mirror': 4}
|
|
|
|
|
|
@pytest.mark.parametrize('dt', [float, Decimal], ids=['float', 'object'])
|
|
class TestNeighborhoodIter:
|
|
# Simple, 2d tests
|
|
def test_simple2d(self, dt):
|
|
# Test zero and one padding for simple data type
|
|
x = np.array([[0, 1], [2, 3]], dtype=dt)
|
|
r = [np.array([[0, 0, 0], [0, 0, 1]], dtype=dt),
|
|
np.array([[0, 0, 0], [0, 1, 0]], dtype=dt),
|
|
np.array([[0, 0, 1], [0, 2, 3]], dtype=dt),
|
|
np.array([[0, 1, 0], [2, 3, 0]], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator(
|
|
x, [-1, 0, -1, 1], x[0], NEIGH_MODE['zero'])
|
|
assert_array_equal(l, r)
|
|
|
|
r = [np.array([[1, 1, 1], [1, 0, 1]], dtype=dt),
|
|
np.array([[1, 1, 1], [0, 1, 1]], dtype=dt),
|
|
np.array([[1, 0, 1], [1, 2, 3]], dtype=dt),
|
|
np.array([[0, 1, 1], [2, 3, 1]], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator(
|
|
x, [-1, 0, -1, 1], x[0], NEIGH_MODE['one'])
|
|
assert_array_equal(l, r)
|
|
|
|
r = [np.array([[4, 4, 4], [4, 0, 1]], dtype=dt),
|
|
np.array([[4, 4, 4], [0, 1, 4]], dtype=dt),
|
|
np.array([[4, 0, 1], [4, 2, 3]], dtype=dt),
|
|
np.array([[0, 1, 4], [2, 3, 4]], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator(
|
|
x, [-1, 0, -1, 1], 4, NEIGH_MODE['constant'])
|
|
assert_array_equal(l, r)
|
|
|
|
def test_mirror2d(self, dt):
|
|
x = np.array([[0, 1], [2, 3]], dtype=dt)
|
|
r = [np.array([[0, 0, 1], [0, 0, 1]], dtype=dt),
|
|
np.array([[0, 1, 1], [0, 1, 1]], dtype=dt),
|
|
np.array([[0, 0, 1], [2, 2, 3]], dtype=dt),
|
|
np.array([[0, 1, 1], [2, 3, 3]], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator(
|
|
x, [-1, 0, -1, 1], x[0], NEIGH_MODE['mirror'])
|
|
assert_array_equal(l, r)
|
|
|
|
# Simple, 1d tests
|
|
def test_simple(self, dt):
|
|
# Test padding with constant values
|
|
x = np.linspace(1, 5, 5).astype(dt)
|
|
r = [[0, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 0]]
|
|
l = _multiarray_tests.test_neighborhood_iterator(
|
|
x, [-1, 1], x[0], NEIGH_MODE['zero'])
|
|
assert_array_equal(l, r)
|
|
|
|
r = [[1, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 1]]
|
|
l = _multiarray_tests.test_neighborhood_iterator(
|
|
x, [-1, 1], x[0], NEIGH_MODE['one'])
|
|
assert_array_equal(l, r)
|
|
|
|
r = [[x[4], 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, x[4]]]
|
|
l = _multiarray_tests.test_neighborhood_iterator(
|
|
x, [-1, 1], x[4], NEIGH_MODE['constant'])
|
|
assert_array_equal(l, r)
|
|
|
|
# Test mirror modes
|
|
def test_mirror(self, dt):
|
|
x = np.linspace(1, 5, 5).astype(dt)
|
|
r = np.array([[2, 1, 1, 2, 3], [1, 1, 2, 3, 4], [1, 2, 3, 4, 5],
|
|
[2, 3, 4, 5, 5], [3, 4, 5, 5, 4]], dtype=dt)
|
|
l = _multiarray_tests.test_neighborhood_iterator(
|
|
x, [-2, 2], x[1], NEIGH_MODE['mirror'])
|
|
assert_([i.dtype == dt for i in l])
|
|
assert_array_equal(l, r)
|
|
|
|
# Circular mode
|
|
def test_circular(self, dt):
|
|
x = np.linspace(1, 5, 5).astype(dt)
|
|
r = np.array([[4, 5, 1, 2, 3], [5, 1, 2, 3, 4], [1, 2, 3, 4, 5],
|
|
[2, 3, 4, 5, 1], [3, 4, 5, 1, 2]], dtype=dt)
|
|
l = _multiarray_tests.test_neighborhood_iterator(
|
|
x, [-2, 2], x[0], NEIGH_MODE['circular'])
|
|
assert_array_equal(l, r)
|
|
|
|
|
|
# Test stacking neighborhood iterators
|
|
class TestStackedNeighborhoodIter:
|
|
# Simple, 1d test: stacking 2 constant-padded neigh iterators
|
|
def test_simple_const(self):
|
|
dt = np.float64
|
|
# Test zero and one padding for simple data type
|
|
x = np.array([1, 2, 3], dtype=dt)
|
|
r = [np.array([0], dtype=dt),
|
|
np.array([0], dtype=dt),
|
|
np.array([1], dtype=dt),
|
|
np.array([2], dtype=dt),
|
|
np.array([3], dtype=dt),
|
|
np.array([0], dtype=dt),
|
|
np.array([0], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator_oob(
|
|
x, [-2, 4], NEIGH_MODE['zero'], [0, 0], NEIGH_MODE['zero'])
|
|
assert_array_equal(l, r)
|
|
|
|
r = [np.array([1, 0, 1], dtype=dt),
|
|
np.array([0, 1, 2], dtype=dt),
|
|
np.array([1, 2, 3], dtype=dt),
|
|
np.array([2, 3, 0], dtype=dt),
|
|
np.array([3, 0, 1], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator_oob(
|
|
x, [-1, 3], NEIGH_MODE['zero'], [-1, 1], NEIGH_MODE['one'])
|
|
assert_array_equal(l, r)
|
|
|
|
# 2nd simple, 1d test: stacking 2 neigh iterators, mixing const padding and
|
|
# mirror padding
|
|
def test_simple_mirror(self):
|
|
dt = np.float64
|
|
# Stacking zero on top of mirror
|
|
x = np.array([1, 2, 3], dtype=dt)
|
|
r = [np.array([0, 1, 1], dtype=dt),
|
|
np.array([1, 1, 2], dtype=dt),
|
|
np.array([1, 2, 3], dtype=dt),
|
|
np.array([2, 3, 3], dtype=dt),
|
|
np.array([3, 3, 0], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator_oob(
|
|
x, [-1, 3], NEIGH_MODE['mirror'], [-1, 1], NEIGH_MODE['zero'])
|
|
assert_array_equal(l, r)
|
|
|
|
# Stacking mirror on top of zero
|
|
x = np.array([1, 2, 3], dtype=dt)
|
|
r = [np.array([1, 0, 0], dtype=dt),
|
|
np.array([0, 0, 1], dtype=dt),
|
|
np.array([0, 1, 2], dtype=dt),
|
|
np.array([1, 2, 3], dtype=dt),
|
|
np.array([2, 3, 0], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator_oob(
|
|
x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['mirror'])
|
|
assert_array_equal(l, r)
|
|
|
|
# Stacking mirror on top of zero: 2nd
|
|
x = np.array([1, 2, 3], dtype=dt)
|
|
r = [np.array([0, 1, 2], dtype=dt),
|
|
np.array([1, 2, 3], dtype=dt),
|
|
np.array([2, 3, 0], dtype=dt),
|
|
np.array([3, 0, 0], dtype=dt),
|
|
np.array([0, 0, 3], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator_oob(
|
|
x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['mirror'])
|
|
assert_array_equal(l, r)
|
|
|
|
# Stacking mirror on top of zero: 3rd
|
|
x = np.array([1, 2, 3], dtype=dt)
|
|
r = [np.array([1, 0, 0, 1, 2], dtype=dt),
|
|
np.array([0, 0, 1, 2, 3], dtype=dt),
|
|
np.array([0, 1, 2, 3, 0], dtype=dt),
|
|
np.array([1, 2, 3, 0, 0], dtype=dt),
|
|
np.array([2, 3, 0, 0, 3], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator_oob(
|
|
x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['mirror'])
|
|
assert_array_equal(l, r)
|
|
|
|
# 3rd simple, 1d test: stacking 2 neigh iterators, mixing const padding and
|
|
# circular padding
|
|
def test_simple_circular(self):
|
|
dt = np.float64
|
|
# Stacking zero on top of mirror
|
|
x = np.array([1, 2, 3], dtype=dt)
|
|
r = [np.array([0, 3, 1], dtype=dt),
|
|
np.array([3, 1, 2], dtype=dt),
|
|
np.array([1, 2, 3], dtype=dt),
|
|
np.array([2, 3, 1], dtype=dt),
|
|
np.array([3, 1, 0], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator_oob(
|
|
x, [-1, 3], NEIGH_MODE['circular'], [-1, 1], NEIGH_MODE['zero'])
|
|
assert_array_equal(l, r)
|
|
|
|
# Stacking mirror on top of zero
|
|
x = np.array([1, 2, 3], dtype=dt)
|
|
r = [np.array([3, 0, 0], dtype=dt),
|
|
np.array([0, 0, 1], dtype=dt),
|
|
np.array([0, 1, 2], dtype=dt),
|
|
np.array([1, 2, 3], dtype=dt),
|
|
np.array([2, 3, 0], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator_oob(
|
|
x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['circular'])
|
|
assert_array_equal(l, r)
|
|
|
|
# Stacking mirror on top of zero: 2nd
|
|
x = np.array([1, 2, 3], dtype=dt)
|
|
r = [np.array([0, 1, 2], dtype=dt),
|
|
np.array([1, 2, 3], dtype=dt),
|
|
np.array([2, 3, 0], dtype=dt),
|
|
np.array([3, 0, 0], dtype=dt),
|
|
np.array([0, 0, 1], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator_oob(
|
|
x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['circular'])
|
|
assert_array_equal(l, r)
|
|
|
|
# Stacking mirror on top of zero: 3rd
|
|
x = np.array([1, 2, 3], dtype=dt)
|
|
r = [np.array([3, 0, 0, 1, 2], dtype=dt),
|
|
np.array([0, 0, 1, 2, 3], dtype=dt),
|
|
np.array([0, 1, 2, 3, 0], dtype=dt),
|
|
np.array([1, 2, 3, 0, 0], dtype=dt),
|
|
np.array([2, 3, 0, 0, 1], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator_oob(
|
|
x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['circular'])
|
|
assert_array_equal(l, r)
|
|
|
|
# 4th simple, 1d test: stacking 2 neigh iterators, but with lower iterator
|
|
# being strictly within the array
|
|
def test_simple_strict_within(self):
|
|
dt = np.float64
|
|
# Stacking zero on top of zero, first neighborhood strictly inside the
|
|
# array
|
|
x = np.array([1, 2, 3], dtype=dt)
|
|
r = [np.array([1, 2, 3, 0], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator_oob(
|
|
x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['zero'])
|
|
assert_array_equal(l, r)
|
|
|
|
# Stacking mirror on top of zero, first neighborhood strictly inside the
|
|
# array
|
|
x = np.array([1, 2, 3], dtype=dt)
|
|
r = [np.array([1, 2, 3, 3], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator_oob(
|
|
x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['mirror'])
|
|
assert_array_equal(l, r)
|
|
|
|
# Stacking mirror on top of zero, first neighborhood strictly inside the
|
|
# array
|
|
x = np.array([1, 2, 3], dtype=dt)
|
|
r = [np.array([1, 2, 3, 1], dtype=dt)]
|
|
l = _multiarray_tests.test_neighborhood_iterator_oob(
|
|
x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['circular'])
|
|
assert_array_equal(l, r)
|
|
|
|
class TestWarnings:
|
|
|
|
def test_complex_warning(self):
|
|
x = np.array([1, 2])
|
|
y = np.array([1-2j, 1+2j])
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("error", np.ComplexWarning)
|
|
assert_raises(np.ComplexWarning, x.__setitem__, slice(None), y)
|
|
assert_equal(x, [1, 2])
|
|
|
|
|
|
class TestMinScalarType:
|
|
|
|
def test_usigned_shortshort(self):
|
|
dt = np.min_scalar_type(2**8-1)
|
|
wanted = np.dtype('uint8')
|
|
assert_equal(wanted, dt)
|
|
|
|
def test_usigned_short(self):
|
|
dt = np.min_scalar_type(2**16-1)
|
|
wanted = np.dtype('uint16')
|
|
assert_equal(wanted, dt)
|
|
|
|
def test_usigned_int(self):
|
|
dt = np.min_scalar_type(2**32-1)
|
|
wanted = np.dtype('uint32')
|
|
assert_equal(wanted, dt)
|
|
|
|
def test_usigned_longlong(self):
|
|
dt = np.min_scalar_type(2**63-1)
|
|
wanted = np.dtype('uint64')
|
|
assert_equal(wanted, dt)
|
|
|
|
def test_object(self):
|
|
dt = np.min_scalar_type(2**64)
|
|
wanted = np.dtype('O')
|
|
assert_equal(wanted, dt)
|
|
|
|
|
|
from numpy.core._internal import _dtype_from_pep3118
|
|
|
|
|
|
class TestPEP3118Dtype:
|
|
def _check(self, spec, wanted):
|
|
dt = np.dtype(wanted)
|
|
actual = _dtype_from_pep3118(spec)
|
|
assert_equal(actual, dt,
|
|
err_msg="spec %r != dtype %r" % (spec, wanted))
|
|
|
|
def test_native_padding(self):
|
|
align = np.dtype('i').alignment
|
|
for j in range(8):
|
|
if j == 0:
|
|
s = 'bi'
|
|
else:
|
|
s = 'b%dxi' % j
|
|
self._check('@'+s, {'f0': ('i1', 0),
|
|
'f1': ('i', align*(1 + j//align))})
|
|
self._check('='+s, {'f0': ('i1', 0),
|
|
'f1': ('i', 1+j)})
|
|
|
|
def test_native_padding_2(self):
|
|
# Native padding should work also for structs and sub-arrays
|
|
self._check('x3T{xi}', {'f0': (({'f0': ('i', 4)}, (3,)), 4)})
|
|
self._check('^x3T{xi}', {'f0': (({'f0': ('i', 1)}, (3,)), 1)})
|
|
|
|
def test_trailing_padding(self):
|
|
# Trailing padding should be included, *and*, the item size
|
|
# should match the alignment if in aligned mode
|
|
align = np.dtype('i').alignment
|
|
size = np.dtype('i').itemsize
|
|
|
|
def aligned(n):
|
|
return align*(1 + (n-1)//align)
|
|
|
|
base = dict(formats=['i'], names=['f0'])
|
|
|
|
self._check('ix', dict(itemsize=aligned(size + 1), **base))
|
|
self._check('ixx', dict(itemsize=aligned(size + 2), **base))
|
|
self._check('ixxx', dict(itemsize=aligned(size + 3), **base))
|
|
self._check('ixxxx', dict(itemsize=aligned(size + 4), **base))
|
|
self._check('i7x', dict(itemsize=aligned(size + 7), **base))
|
|
|
|
self._check('^ix', dict(itemsize=size + 1, **base))
|
|
self._check('^ixx', dict(itemsize=size + 2, **base))
|
|
self._check('^ixxx', dict(itemsize=size + 3, **base))
|
|
self._check('^ixxxx', dict(itemsize=size + 4, **base))
|
|
self._check('^i7x', dict(itemsize=size + 7, **base))
|
|
|
|
def test_native_padding_3(self):
|
|
dt = np.dtype(
|
|
[('a', 'b'), ('b', 'i'),
|
|
('sub', np.dtype('b,i')), ('c', 'i')],
|
|
align=True)
|
|
self._check("T{b:a:xxxi:b:T{b:f0:=i:f1:}:sub:xxxi:c:}", dt)
|
|
|
|
dt = np.dtype(
|
|
[('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'),
|
|
('e', 'b'), ('sub', np.dtype('b,i', align=True))])
|
|
self._check("T{b:a:=i:b:b:c:b:d:b:e:T{b:f0:xxxi:f1:}:sub:}", dt)
|
|
|
|
def test_padding_with_array_inside_struct(self):
|
|
dt = np.dtype(
|
|
[('a', 'b'), ('b', 'i'), ('c', 'b', (3,)),
|
|
('d', 'i')],
|
|
align=True)
|
|
self._check("T{b:a:xxxi:b:3b:c:xi:d:}", dt)
|
|
|
|
def test_byteorder_inside_struct(self):
|
|
# The byte order after @T{=i} should be '=', not '@'.
|
|
# Check this by noting the absence of native alignment.
|
|
self._check('@T{^i}xi', {'f0': ({'f0': ('i', 0)}, 0),
|
|
'f1': ('i', 5)})
|
|
|
|
def test_intra_padding(self):
|
|
# Natively aligned sub-arrays may require some internal padding
|
|
align = np.dtype('i').alignment
|
|
size = np.dtype('i').itemsize
|
|
|
|
def aligned(n):
|
|
return (align*(1 + (n-1)//align))
|
|
|
|
self._check('(3)T{ix}', (dict(
|
|
names=['f0'],
|
|
formats=['i'],
|
|
offsets=[0],
|
|
itemsize=aligned(size + 1)
|
|
), (3,)))
|
|
|
|
def test_char_vs_string(self):
|
|
dt = np.dtype('c')
|
|
self._check('c', dt)
|
|
|
|
dt = np.dtype([('f0', 'S1', (4,)), ('f1', 'S4')])
|
|
self._check('4c4s', dt)
|
|
|
|
def test_field_order(self):
|
|
# gh-9053 - previously, we relied on dictionary key order
|
|
self._check("(0)I:a:f:b:", [('a', 'I', (0,)), ('b', 'f')])
|
|
self._check("(0)I:b:f:a:", [('b', 'I', (0,)), ('a', 'f')])
|
|
|
|
def test_unnamed_fields(self):
|
|
self._check('ii', [('f0', 'i'), ('f1', 'i')])
|
|
self._check('ii:f0:', [('f1', 'i'), ('f0', 'i')])
|
|
|
|
self._check('i', 'i')
|
|
self._check('i:f0:', [('f0', 'i')])
|
|
|
|
|
|
class TestNewBufferProtocol:
|
|
""" Test PEP3118 buffers """
|
|
|
|
def _check_roundtrip(self, obj):
|
|
obj = np.asarray(obj)
|
|
x = memoryview(obj)
|
|
y = np.asarray(x)
|
|
y2 = np.array(x)
|
|
assert_(not y.flags.owndata)
|
|
assert_(y2.flags.owndata)
|
|
|
|
assert_equal(y.dtype, obj.dtype)
|
|
assert_equal(y.shape, obj.shape)
|
|
assert_array_equal(obj, y)
|
|
|
|
assert_equal(y2.dtype, obj.dtype)
|
|
assert_equal(y2.shape, obj.shape)
|
|
assert_array_equal(obj, y2)
|
|
|
|
def test_roundtrip(self):
|
|
x = np.array([1, 2, 3, 4, 5], dtype='i4')
|
|
self._check_roundtrip(x)
|
|
|
|
x = np.array([[1, 2], [3, 4]], dtype=np.float64)
|
|
self._check_roundtrip(x)
|
|
|
|
x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:]
|
|
self._check_roundtrip(x)
|
|
|
|
dt = [('a', 'b'),
|
|
('b', 'h'),
|
|
('c', 'i'),
|
|
('d', 'l'),
|
|
('dx', 'q'),
|
|
('e', 'B'),
|
|
('f', 'H'),
|
|
('g', 'I'),
|
|
('h', 'L'),
|
|
('hx', 'Q'),
|
|
('i', np.single),
|
|
('j', np.double),
|
|
('k', np.longdouble),
|
|
('ix', np.csingle),
|
|
('jx', np.cdouble),
|
|
('kx', np.clongdouble),
|
|
('l', 'S4'),
|
|
('m', 'U4'),
|
|
('n', 'V3'),
|
|
('o', '?'),
|
|
('p', np.half),
|
|
]
|
|
x = np.array(
|
|
[(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
b'aaaa', 'bbbb', b'xxx', True, 1.0)],
|
|
dtype=dt)
|
|
self._check_roundtrip(x)
|
|
|
|
x = np.array(([[1, 2], [3, 4]],), dtype=[('a', (int, (2, 2)))])
|
|
self._check_roundtrip(x)
|
|
|
|
x = np.array([1, 2, 3], dtype='>i2')
|
|
self._check_roundtrip(x)
|
|
|
|
x = np.array([1, 2, 3], dtype='<i2')
|
|
self._check_roundtrip(x)
|
|
|
|
x = np.array([1, 2, 3], dtype='>i4')
|
|
self._check_roundtrip(x)
|
|
|
|
x = np.array([1, 2, 3], dtype='<i4')
|
|
self._check_roundtrip(x)
|
|
|
|
# check long long can be represented as non-native
|
|
x = np.array([1, 2, 3], dtype='>q')
|
|
self._check_roundtrip(x)
|
|
|
|
# Native-only data types can be passed through the buffer interface
|
|
# only in native byte order
|
|
if sys.byteorder == 'little':
|
|
x = np.array([1, 2, 3], dtype='>g')
|
|
assert_raises(ValueError, self._check_roundtrip, x)
|
|
x = np.array([1, 2, 3], dtype='<g')
|
|
self._check_roundtrip(x)
|
|
else:
|
|
x = np.array([1, 2, 3], dtype='>g')
|
|
self._check_roundtrip(x)
|
|
x = np.array([1, 2, 3], dtype='<g')
|
|
assert_raises(ValueError, self._check_roundtrip, x)
|
|
|
|
def test_roundtrip_half(self):
|
|
half_list = [
|
|
1.0,
|
|
-2.0,
|
|
6.5504 * 10**4, # (max half precision)
|
|
2**-14, # ~= 6.10352 * 10**-5 (minimum positive normal)
|
|
2**-24, # ~= 5.96046 * 10**-8 (minimum strictly positive subnormal)
|
|
0.0,
|
|
-0.0,
|
|
float('+inf'),
|
|
float('-inf'),
|
|
0.333251953125, # ~= 1/3
|
|
]
|
|
|
|
x = np.array(half_list, dtype='>e')
|
|
self._check_roundtrip(x)
|
|
x = np.array(half_list, dtype='<e')
|
|
self._check_roundtrip(x)
|
|
|
|
def test_roundtrip_single_types(self):
|
|
for typ in np.typeDict.values():
|
|
dtype = np.dtype(typ)
|
|
|
|
if dtype.char in 'Mm':
|
|
# datetimes cannot be used in buffers
|
|
continue
|
|
if dtype.char == 'V':
|
|
# skip void
|
|
continue
|
|
|
|
x = np.zeros(4, dtype=dtype)
|
|
self._check_roundtrip(x)
|
|
|
|
if dtype.char not in 'qQgG':
|
|
dt = dtype.newbyteorder('<')
|
|
x = np.zeros(4, dtype=dt)
|
|
self._check_roundtrip(x)
|
|
|
|
dt = dtype.newbyteorder('>')
|
|
x = np.zeros(4, dtype=dt)
|
|
self._check_roundtrip(x)
|
|
|
|
def test_roundtrip_scalar(self):
|
|
# Issue #4015.
|
|
self._check_roundtrip(0)
|
|
|
|
def test_invalid_buffer_format(self):
|
|
# datetime64 cannot be used fully in a buffer yet
|
|
# Should be fixed in the next Numpy major release
|
|
dt = np.dtype([('a', 'uint16'), ('b', 'M8[s]')])
|
|
a = np.empty(3, dt)
|
|
assert_raises((ValueError, BufferError), memoryview, a)
|
|
assert_raises((ValueError, BufferError), memoryview, np.array((3), 'M8[D]'))
|
|
|
|
def test_export_simple_1d(self):
|
|
x = np.array([1, 2, 3, 4, 5], dtype='i')
|
|
y = memoryview(x)
|
|
assert_equal(y.format, 'i')
|
|
assert_equal(y.shape, (5,))
|
|
assert_equal(y.ndim, 1)
|
|
assert_equal(y.strides, (4,))
|
|
assert_equal(y.suboffsets, ())
|
|
assert_equal(y.itemsize, 4)
|
|
|
|
def test_export_simple_nd(self):
|
|
x = np.array([[1, 2], [3, 4]], dtype=np.float64)
|
|
y = memoryview(x)
|
|
assert_equal(y.format, 'd')
|
|
assert_equal(y.shape, (2, 2))
|
|
assert_equal(y.ndim, 2)
|
|
assert_equal(y.strides, (16, 8))
|
|
assert_equal(y.suboffsets, ())
|
|
assert_equal(y.itemsize, 8)
|
|
|
|
def test_export_discontiguous(self):
|
|
x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:]
|
|
y = memoryview(x)
|
|
assert_equal(y.format, 'f')
|
|
assert_equal(y.shape, (3, 3))
|
|
assert_equal(y.ndim, 2)
|
|
assert_equal(y.strides, (36, 4))
|
|
assert_equal(y.suboffsets, ())
|
|
assert_equal(y.itemsize, 4)
|
|
|
|
def test_export_record(self):
|
|
dt = [('a', 'b'),
|
|
('b', 'h'),
|
|
('c', 'i'),
|
|
('d', 'l'),
|
|
('dx', 'q'),
|
|
('e', 'B'),
|
|
('f', 'H'),
|
|
('g', 'I'),
|
|
('h', 'L'),
|
|
('hx', 'Q'),
|
|
('i', np.single),
|
|
('j', np.double),
|
|
('k', np.longdouble),
|
|
('ix', np.csingle),
|
|
('jx', np.cdouble),
|
|
('kx', np.clongdouble),
|
|
('l', 'S4'),
|
|
('m', 'U4'),
|
|
('n', 'V3'),
|
|
('o', '?'),
|
|
('p', np.half),
|
|
]
|
|
x = np.array(
|
|
[(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
b'aaaa', 'bbbb', b' ', True, 1.0)],
|
|
dtype=dt)
|
|
y = memoryview(x)
|
|
assert_equal(y.shape, (1,))
|
|
assert_equal(y.ndim, 1)
|
|
assert_equal(y.suboffsets, ())
|
|
|
|
sz = sum([np.dtype(b).itemsize for a, b in dt])
|
|
if np.dtype('l').itemsize == 4:
|
|
assert_equal(y.format, 'T{b:a:=h:b:i:c:l:d:q:dx:B:e:@H:f:=I:g:L:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}')
|
|
else:
|
|
assert_equal(y.format, 'T{b:a:=h:b:i:c:q:d:q:dx:B:e:@H:f:=I:g:Q:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}')
|
|
# Cannot test if NPY_RELAXED_STRIDES_CHECKING changes the strides
|
|
if not (np.ones(1).strides[0] == np.iinfo(np.intp).max):
|
|
assert_equal(y.strides, (sz,))
|
|
assert_equal(y.itemsize, sz)
|
|
|
|
def test_export_subarray(self):
|
|
x = np.array(([[1, 2], [3, 4]],), dtype=[('a', ('i', (2, 2)))])
|
|
y = memoryview(x)
|
|
assert_equal(y.format, 'T{(2,2)i:a:}')
|
|
assert_equal(y.shape, ())
|
|
assert_equal(y.ndim, 0)
|
|
assert_equal(y.strides, ())
|
|
assert_equal(y.suboffsets, ())
|
|
assert_equal(y.itemsize, 16)
|
|
|
|
def test_export_endian(self):
|
|
x = np.array([1, 2, 3], dtype='>i')
|
|
y = memoryview(x)
|
|
if sys.byteorder == 'little':
|
|
assert_equal(y.format, '>i')
|
|
else:
|
|
assert_equal(y.format, 'i')
|
|
|
|
x = np.array([1, 2, 3], dtype='<i')
|
|
y = memoryview(x)
|
|
if sys.byteorder == 'little':
|
|
assert_equal(y.format, 'i')
|
|
else:
|
|
assert_equal(y.format, '<i')
|
|
|
|
def test_export_flags(self):
|
|
# Check SIMPLE flag, see also gh-3613 (exception should be BufferError)
|
|
assert_raises(ValueError,
|
|
_multiarray_tests.get_buffer_info,
|
|
np.arange(5)[::2], ('SIMPLE',))
|
|
|
|
def test_padding(self):
|
|
for j in range(8):
|
|
x = np.array([(1,), (2,)], dtype={'f0': (int, j)})
|
|
self._check_roundtrip(x)
|
|
|
|
def test_reference_leak(self):
|
|
if HAS_REFCOUNT:
|
|
count_1 = sys.getrefcount(np.core._internal)
|
|
a = np.zeros(4)
|
|
b = memoryview(a)
|
|
c = np.asarray(b)
|
|
if HAS_REFCOUNT:
|
|
count_2 = sys.getrefcount(np.core._internal)
|
|
assert_equal(count_1, count_2)
|
|
del c # avoid pyflakes unused variable warning.
|
|
|
|
def test_padded_struct_array(self):
|
|
dt1 = np.dtype(
|
|
[('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')],
|
|
align=True)
|
|
x1 = np.arange(dt1.itemsize, dtype=np.int8).view(dt1)
|
|
self._check_roundtrip(x1)
|
|
|
|
dt2 = np.dtype(
|
|
[('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')],
|
|
align=True)
|
|
x2 = np.arange(dt2.itemsize, dtype=np.int8).view(dt2)
|
|
self._check_roundtrip(x2)
|
|
|
|
dt3 = np.dtype(
|
|
[('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'),
|
|
('e', 'b'), ('sub', np.dtype('b,i', align=True))])
|
|
x3 = np.arange(dt3.itemsize, dtype=np.int8).view(dt3)
|
|
self._check_roundtrip(x3)
|
|
|
|
@pytest.mark.valgrind_error(reason="leaks buffer info cache temporarily.")
|
|
def test_relaxed_strides(self, c=np.ones((1, 10, 10), dtype='i8')):
|
|
# Note: c defined as parameter so that it is persistent and leak
|
|
# checks will notice gh-16934 (buffer info cache leak).
|
|
|
|
# Check for NPY_RELAXED_STRIDES_CHECKING:
|
|
if np.ones((10, 1), order="C").flags.f_contiguous:
|
|
c.strides = (-1, 80, 8)
|
|
|
|
assert_(memoryview(c).strides == (800, 80, 8))
|
|
|
|
# Writing C-contiguous data to a BytesIO buffer should work
|
|
fd = io.BytesIO()
|
|
fd.write(c.data)
|
|
|
|
fortran = c.T
|
|
assert_(memoryview(fortran).strides == (8, 80, 800))
|
|
|
|
arr = np.ones((1, 10))
|
|
if arr.flags.f_contiguous:
|
|
shape, strides = _multiarray_tests.get_buffer_info(
|
|
arr, ['F_CONTIGUOUS'])
|
|
assert_(strides[0] == 8)
|
|
arr = np.ones((10, 1), order='F')
|
|
shape, strides = _multiarray_tests.get_buffer_info(
|
|
arr, ['C_CONTIGUOUS'])
|
|
assert_(strides[-1] == 8)
|
|
|
|
@pytest.mark.valgrind_error(reason="leaks buffer info cache temporarily.")
|
|
@pytest.mark.skipif(not np.ones((10, 1), order="C").flags.f_contiguous,
|
|
reason="Test is unnecessary (but fails) without relaxed strides.")
|
|
def test_relaxed_strides_buffer_info_leak(self, arr=np.ones((1, 10))):
|
|
"""Test that alternating export of C- and F-order buffers from
|
|
an array which is both C- and F-order when relaxed strides is
|
|
active works.
|
|
This test defines array in the signature to ensure leaking more
|
|
references every time the test is run (catching the leak with
|
|
pytest-leaks).
|
|
"""
|
|
for i in range(10):
|
|
_, s = _multiarray_tests.get_buffer_info(arr, ['F_CONTIGUOUS'])
|
|
assert s == (8, 8)
|
|
_, s = _multiarray_tests.get_buffer_info(arr, ['C_CONTIGUOUS'])
|
|
assert s == (80, 8)
|
|
|
|
def test_out_of_order_fields(self):
|
|
dt = np.dtype(dict(
|
|
formats=['<i4', '<i4'],
|
|
names=['one', 'two'],
|
|
offsets=[4, 0],
|
|
itemsize=8
|
|
))
|
|
|
|
# overlapping fields cannot be represented by PEP3118
|
|
arr = np.empty(1, dt)
|
|
with assert_raises(ValueError):
|
|
memoryview(arr)
|
|
|
|
def test_max_dims(self):
|
|
a = np.empty((1,) * 32)
|
|
self._check_roundtrip(a)
|
|
|
|
@pytest.mark.slow
|
|
def test_error_too_many_dims(self):
|
|
def make_ctype(shape, scalar_type):
|
|
t = scalar_type
|
|
for dim in shape[::-1]:
|
|
t = dim * t
|
|
return t
|
|
|
|
# construct a memoryview with 33 dimensions
|
|
c_u8_33d = make_ctype((1,)*33, ctypes.c_uint8)
|
|
m = memoryview(c_u8_33d())
|
|
assert_equal(m.ndim, 33)
|
|
|
|
assert_raises_regex(
|
|
RuntimeError, "ndim",
|
|
np.array, m)
|
|
|
|
# The above seems to create some deep cycles, clean them up for
|
|
# easier reference count debugging:
|
|
del c_u8_33d, m
|
|
for i in range(33):
|
|
if gc.collect() == 0:
|
|
break
|
|
|
|
def test_error_pointer_type(self):
|
|
# gh-6741
|
|
m = memoryview(ctypes.pointer(ctypes.c_uint8()))
|
|
assert_('&' in m.format)
|
|
|
|
assert_raises_regex(
|
|
ValueError, "format string",
|
|
np.array, m)
|
|
|
|
def test_error_message_unsupported(self):
|
|
# wchar has no corresponding numpy type - if this changes in future, we
|
|
# need a better way to construct an invalid memoryview format.
|
|
t = ctypes.c_wchar * 4
|
|
with assert_raises(ValueError) as cm:
|
|
np.array(t())
|
|
|
|
exc = cm.exception
|
|
with assert_raises_regex(
|
|
NotImplementedError,
|
|
r"Unrepresentable .* 'u' \(UCS-2 strings\)"
|
|
):
|
|
raise exc.__cause__
|
|
|
|
def test_ctypes_integer_via_memoryview(self):
|
|
# gh-11150, due to bpo-10746
|
|
for c_integer in {ctypes.c_int, ctypes.c_long, ctypes.c_longlong}:
|
|
value = c_integer(42)
|
|
with warnings.catch_warnings(record=True):
|
|
warnings.filterwarnings('always', r'.*\bctypes\b', RuntimeWarning)
|
|
np.asarray(value)
|
|
|
|
def test_ctypes_struct_via_memoryview(self):
|
|
# gh-10528
|
|
class foo(ctypes.Structure):
|
|
_fields_ = [('a', ctypes.c_uint8), ('b', ctypes.c_uint32)]
|
|
f = foo(a=1, b=2)
|
|
|
|
with warnings.catch_warnings(record=True):
|
|
warnings.filterwarnings('always', r'.*\bctypes\b', RuntimeWarning)
|
|
arr = np.asarray(f)
|
|
|
|
assert_equal(arr['a'], 1)
|
|
assert_equal(arr['b'], 2)
|
|
f.a = 3
|
|
assert_equal(arr['a'], 3)
|
|
|
|
|
|
class TestArrayAttributeDeletion:
|
|
|
|
def test_multiarray_writable_attributes_deletion(self):
|
|
# ticket #2046, should not seqfault, raise AttributeError
|
|
a = np.ones(2)
|
|
attr = ['shape', 'strides', 'data', 'dtype', 'real', 'imag', 'flat']
|
|
with suppress_warnings() as sup:
|
|
sup.filter(DeprecationWarning, "Assigning the 'data' attribute")
|
|
for s in attr:
|
|
assert_raises(AttributeError, delattr, a, s)
|
|
|
|
def test_multiarray_not_writable_attributes_deletion(self):
|
|
a = np.ones(2)
|
|
attr = ["ndim", "flags", "itemsize", "size", "nbytes", "base",
|
|
"ctypes", "T", "__array_interface__", "__array_struct__",
|
|
"__array_priority__", "__array_finalize__"]
|
|
for s in attr:
|
|
assert_raises(AttributeError, delattr, a, s)
|
|
|
|
def test_multiarray_flags_writable_attribute_deletion(self):
|
|
a = np.ones(2).flags
|
|
attr = ['writebackifcopy', 'updateifcopy', 'aligned', 'writeable']
|
|
for s in attr:
|
|
assert_raises(AttributeError, delattr, a, s)
|
|
|
|
def test_multiarray_flags_not_writable_attribute_deletion(self):
|
|
a = np.ones(2).flags
|
|
attr = ["contiguous", "c_contiguous", "f_contiguous", "fortran",
|
|
"owndata", "fnc", "forc", "behaved", "carray", "farray",
|
|
"num"]
|
|
for s in attr:
|
|
assert_raises(AttributeError, delattr, a, s)
|
|
|
|
|
|
class TestArrayInterface():
|
|
class Foo:
|
|
def __init__(self, value):
|
|
self.value = value
|
|
self.iface = {'typestr': 'f8'}
|
|
|
|
def __float__(self):
|
|
return float(self.value)
|
|
|
|
@property
|
|
def __array_interface__(self):
|
|
return self.iface
|
|
|
|
|
|
f = Foo(0.5)
|
|
|
|
@pytest.mark.parametrize('val, iface, expected', [
|
|
(f, {}, 0.5),
|
|
([f], {}, [0.5]),
|
|
([f, f], {}, [0.5, 0.5]),
|
|
(f, {'shape': ()}, 0.5),
|
|
(f, {'shape': None}, TypeError),
|
|
(f, {'shape': (1, 1)}, [[0.5]]),
|
|
(f, {'shape': (2,)}, ValueError),
|
|
(f, {'strides': ()}, 0.5),
|
|
(f, {'strides': (2,)}, ValueError),
|
|
(f, {'strides': 16}, TypeError),
|
|
])
|
|
def test_scalar_interface(self, val, iface, expected):
|
|
# Test scalar coercion within the array interface
|
|
self.f.iface = {'typestr': 'f8'}
|
|
self.f.iface.update(iface)
|
|
if HAS_REFCOUNT:
|
|
pre_cnt = sys.getrefcount(np.dtype('f8'))
|
|
if isinstance(expected, type):
|
|
assert_raises(expected, np.array, val)
|
|
else:
|
|
result = np.array(val)
|
|
assert_equal(np.array(val), expected)
|
|
assert result.dtype == 'f8'
|
|
del result
|
|
if HAS_REFCOUNT:
|
|
post_cnt = sys.getrefcount(np.dtype('f8'))
|
|
assert_equal(pre_cnt, post_cnt)
|
|
|
|
def test_interface_no_shape():
|
|
class ArrayLike:
|
|
array = np.array(1)
|
|
__array_interface__ = array.__array_interface__
|
|
assert_equal(np.array(ArrayLike()), 1)
|
|
|
|
|
|
def test_array_interface_itemsize():
|
|
# See gh-6361
|
|
my_dtype = np.dtype({'names': ['A', 'B'], 'formats': ['f4', 'f4'],
|
|
'offsets': [0, 8], 'itemsize': 16})
|
|
a = np.ones(10, dtype=my_dtype)
|
|
descr_t = np.dtype(a.__array_interface__['descr'])
|
|
typestr_t = np.dtype(a.__array_interface__['typestr'])
|
|
assert_equal(descr_t.itemsize, typestr_t.itemsize)
|
|
|
|
|
|
def test_array_interface_empty_shape():
|
|
# See gh-7994
|
|
arr = np.array([1, 2, 3])
|
|
interface1 = dict(arr.__array_interface__)
|
|
interface1['shape'] = ()
|
|
|
|
class DummyArray1:
|
|
__array_interface__ = interface1
|
|
|
|
# NOTE: Because Py2 str/Py3 bytes supports the buffer interface, setting
|
|
# the interface data to bytes would invoke the bug this tests for, that
|
|
# __array_interface__ with shape=() is not allowed if the data is an object
|
|
# exposing the buffer interface
|
|
interface2 = dict(interface1)
|
|
interface2['data'] = arr[0].tobytes()
|
|
|
|
class DummyArray2:
|
|
__array_interface__ = interface2
|
|
|
|
arr1 = np.asarray(DummyArray1())
|
|
arr2 = np.asarray(DummyArray2())
|
|
arr3 = arr[:1].reshape(())
|
|
assert_equal(arr1, arr2)
|
|
assert_equal(arr1, arr3)
|
|
|
|
def test_array_interface_offset():
|
|
arr = np.array([1, 2, 3], dtype='int32')
|
|
interface = dict(arr.__array_interface__)
|
|
interface['data'] = memoryview(arr)
|
|
interface['shape'] = (2,)
|
|
interface['offset'] = 4
|
|
|
|
|
|
class DummyArray:
|
|
__array_interface__ = interface
|
|
|
|
arr1 = np.asarray(DummyArray())
|
|
assert_equal(arr1, arr[1:])
|
|
|
|
def test_flat_element_deletion():
|
|
it = np.ones(3).flat
|
|
try:
|
|
del it[1]
|
|
del it[1:2]
|
|
except TypeError:
|
|
pass
|
|
except Exception:
|
|
raise AssertionError
|
|
|
|
|
|
def test_scalar_element_deletion():
|
|
a = np.zeros(2, dtype=[('x', 'int'), ('y', 'int')])
|
|
assert_raises(ValueError, a[0].__delitem__, 'x')
|
|
|
|
|
|
class TestMemEventHook:
|
|
def test_mem_seteventhook(self):
|
|
# The actual tests are within the C code in
|
|
# multiarray/_multiarray_tests.c.src
|
|
_multiarray_tests.test_pydatamem_seteventhook_start()
|
|
# force an allocation and free of a numpy array
|
|
# needs to be larger then limit of small memory cacher in ctors.c
|
|
a = np.zeros(1000)
|
|
del a
|
|
break_cycles()
|
|
_multiarray_tests.test_pydatamem_seteventhook_end()
|
|
|
|
class TestMapIter:
|
|
def test_mapiter(self):
|
|
# The actual tests are within the C code in
|
|
# multiarray/_multiarray_tests.c.src
|
|
|
|
a = np.arange(12).reshape((3, 4)).astype(float)
|
|
index = ([1, 1, 2, 0],
|
|
[0, 0, 2, 3])
|
|
vals = [50, 50, 30, 16]
|
|
|
|
_multiarray_tests.test_inplace_increment(a, index, vals)
|
|
assert_equal(a, [[0.00, 1., 2.0, 19.],
|
|
[104., 5., 6.0, 7.0],
|
|
[8.00, 9., 40., 11.]])
|
|
|
|
b = np.arange(6).astype(float)
|
|
index = (np.array([1, 2, 0]),)
|
|
vals = [50, 4, 100.1]
|
|
_multiarray_tests.test_inplace_increment(b, index, vals)
|
|
assert_equal(b, [100.1, 51., 6., 3., 4., 5.])
|
|
|
|
|
|
class TestAsCArray:
|
|
def test_1darray(self):
|
|
array = np.arange(24, dtype=np.double)
|
|
from_c = _multiarray_tests.test_as_c_array(array, 3)
|
|
assert_equal(array[3], from_c)
|
|
|
|
def test_2darray(self):
|
|
array = np.arange(24, dtype=np.double).reshape(3, 8)
|
|
from_c = _multiarray_tests.test_as_c_array(array, 2, 4)
|
|
assert_equal(array[2, 4], from_c)
|
|
|
|
def test_3darray(self):
|
|
array = np.arange(24, dtype=np.double).reshape(2, 3, 4)
|
|
from_c = _multiarray_tests.test_as_c_array(array, 1, 2, 3)
|
|
assert_equal(array[1, 2, 3], from_c)
|
|
|
|
|
|
class TestConversion:
|
|
def test_array_scalar_relational_operation(self):
|
|
# All integer
|
|
for dt1 in np.typecodes['AllInteger']:
|
|
assert_(1 > np.array(0, dtype=dt1), "type %s failed" % (dt1,))
|
|
assert_(not 1 < np.array(0, dtype=dt1), "type %s failed" % (dt1,))
|
|
|
|
for dt2 in np.typecodes['AllInteger']:
|
|
assert_(np.array(1, dtype=dt1) > np.array(0, dtype=dt2),
|
|
"type %s and %s failed" % (dt1, dt2))
|
|
assert_(not np.array(1, dtype=dt1) < np.array(0, dtype=dt2),
|
|
"type %s and %s failed" % (dt1, dt2))
|
|
|
|
# Unsigned integers
|
|
for dt1 in 'BHILQP':
|
|
assert_(-1 < np.array(1, dtype=dt1), "type %s failed" % (dt1,))
|
|
assert_(not -1 > np.array(1, dtype=dt1), "type %s failed" % (dt1,))
|
|
assert_(-1 != np.array(1, dtype=dt1), "type %s failed" % (dt1,))
|
|
|
|
# Unsigned vs signed
|
|
for dt2 in 'bhilqp':
|
|
assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2),
|
|
"type %s and %s failed" % (dt1, dt2))
|
|
assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2),
|
|
"type %s and %s failed" % (dt1, dt2))
|
|
assert_(np.array(1, dtype=dt1) != np.array(-1, dtype=dt2),
|
|
"type %s and %s failed" % (dt1, dt2))
|
|
|
|
# Signed integers and floats
|
|
for dt1 in 'bhlqp' + np.typecodes['Float']:
|
|
assert_(1 > np.array(-1, dtype=dt1), "type %s failed" % (dt1,))
|
|
assert_(not 1 < np.array(-1, dtype=dt1), "type %s failed" % (dt1,))
|
|
assert_(-1 == np.array(-1, dtype=dt1), "type %s failed" % (dt1,))
|
|
|
|
for dt2 in 'bhlqp' + np.typecodes['Float']:
|
|
assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2),
|
|
"type %s and %s failed" % (dt1, dt2))
|
|
assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2),
|
|
"type %s and %s failed" % (dt1, dt2))
|
|
assert_(np.array(-1, dtype=dt1) == np.array(-1, dtype=dt2),
|
|
"type %s and %s failed" % (dt1, dt2))
|
|
|
|
def test_to_bool_scalar(self):
|
|
assert_equal(bool(np.array([False])), False)
|
|
assert_equal(bool(np.array([True])), True)
|
|
assert_equal(bool(np.array([[42]])), True)
|
|
assert_raises(ValueError, bool, np.array([1, 2]))
|
|
|
|
class NotConvertible:
|
|
def __bool__(self):
|
|
raise NotImplementedError
|
|
|
|
assert_raises(NotImplementedError, bool, np.array(NotConvertible()))
|
|
assert_raises(NotImplementedError, bool, np.array([NotConvertible()]))
|
|
|
|
self_containing = np.array([None])
|
|
self_containing[0] = self_containing
|
|
try:
|
|
Error = RecursionError
|
|
except NameError:
|
|
Error = RuntimeError # python < 3.5
|
|
assert_raises(Error, bool, self_containing) # previously stack overflow
|
|
self_containing[0] = None # resolve circular reference
|
|
|
|
def test_to_int_scalar(self):
|
|
# gh-9972 means that these aren't always the same
|
|
int_funcs = (int, lambda x: x.__int__())
|
|
for int_func in int_funcs:
|
|
assert_equal(int_func(np.array(0)), 0)
|
|
assert_equal(int_func(np.array([1])), 1)
|
|
assert_equal(int_func(np.array([[42]])), 42)
|
|
assert_raises(TypeError, int_func, np.array([1, 2]))
|
|
|
|
# gh-9972
|
|
assert_equal(4, int_func(np.array('4')))
|
|
assert_equal(5, int_func(np.bytes_(b'5')))
|
|
assert_equal(6, int_func(np.unicode_(u'6')))
|
|
|
|
class HasTrunc:
|
|
def __trunc__(self):
|
|
return 3
|
|
assert_equal(3, int_func(np.array(HasTrunc())))
|
|
assert_equal(3, int_func(np.array([HasTrunc()])))
|
|
|
|
class NotConvertible:
|
|
def __int__(self):
|
|
raise NotImplementedError
|
|
assert_raises(NotImplementedError,
|
|
int_func, np.array(NotConvertible()))
|
|
assert_raises(NotImplementedError,
|
|
int_func, np.array([NotConvertible()]))
|
|
|
|
|
|
class TestWhere:
|
|
def test_basic(self):
|
|
dts = [bool, np.int16, np.int32, np.int64, np.double, np.complex128,
|
|
np.longdouble, np.clongdouble]
|
|
for dt in dts:
|
|
c = np.ones(53, dtype=bool)
|
|
assert_equal(np.where( c, dt(0), dt(1)), dt(0))
|
|
assert_equal(np.where(~c, dt(0), dt(1)), dt(1))
|
|
assert_equal(np.where(True, dt(0), dt(1)), dt(0))
|
|
assert_equal(np.where(False, dt(0), dt(1)), dt(1))
|
|
d = np.ones_like(c).astype(dt)
|
|
e = np.zeros_like(d)
|
|
r = d.astype(dt)
|
|
c[7] = False
|
|
r[7] = e[7]
|
|
assert_equal(np.where(c, e, e), e)
|
|
assert_equal(np.where(c, d, e), r)
|
|
assert_equal(np.where(c, d, e[0]), r)
|
|
assert_equal(np.where(c, d[0], e), r)
|
|
assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2])
|
|
assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2])
|
|
assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3])
|
|
assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3])
|
|
assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2])
|
|
assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3])
|
|
assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3])
|
|
|
|
def test_exotic(self):
|
|
# object
|
|
assert_array_equal(np.where(True, None, None), np.array(None))
|
|
# zero sized
|
|
m = np.array([], dtype=bool).reshape(0, 3)
|
|
b = np.array([], dtype=np.float64).reshape(0, 3)
|
|
assert_array_equal(np.where(m, 0, b), np.array([]).reshape(0, 3))
|
|
|
|
# object cast
|
|
d = np.array([-1.34, -0.16, -0.54, -0.31, -0.08, -0.95, 0.000, 0.313,
|
|
0.547, -0.18, 0.876, 0.236, 1.969, 0.310, 0.699, 1.013,
|
|
1.267, 0.229, -1.39, 0.487])
|
|
nan = float('NaN')
|
|
e = np.array(['5z', '0l', nan, 'Wz', nan, nan, 'Xq', 'cs', nan, nan,
|
|
'QN', nan, nan, 'Fd', nan, nan, 'kp', nan, '36', 'i1'],
|
|
dtype=object)
|
|
m = np.array([0, 0, 1, 0, 1, 1, 0, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 0, 0], dtype=bool)
|
|
|
|
r = e[:]
|
|
r[np.where(m)] = d[np.where(m)]
|
|
assert_array_equal(np.where(m, d, e), r)
|
|
|
|
r = e[:]
|
|
r[np.where(~m)] = d[np.where(~m)]
|
|
assert_array_equal(np.where(m, e, d), r)
|
|
|
|
assert_array_equal(np.where(m, e, e), e)
|
|
|
|
# minimal dtype result with NaN scalar (e.g required by pandas)
|
|
d = np.array([1., 2.], dtype=np.float32)
|
|
e = float('NaN')
|
|
assert_equal(np.where(True, d, e).dtype, np.float32)
|
|
e = float('Infinity')
|
|
assert_equal(np.where(True, d, e).dtype, np.float32)
|
|
e = float('-Infinity')
|
|
assert_equal(np.where(True, d, e).dtype, np.float32)
|
|
# also check upcast
|
|
e = float(1e150)
|
|
assert_equal(np.where(True, d, e).dtype, np.float64)
|
|
|
|
def test_ndim(self):
|
|
c = [True, False]
|
|
a = np.zeros((2, 25))
|
|
b = np.ones((2, 25))
|
|
r = np.where(np.array(c)[:,np.newaxis], a, b)
|
|
assert_array_equal(r[0], a[0])
|
|
assert_array_equal(r[1], b[0])
|
|
|
|
a = a.T
|
|
b = b.T
|
|
r = np.where(c, a, b)
|
|
assert_array_equal(r[:,0], a[:,0])
|
|
assert_array_equal(r[:,1], b[:,0])
|
|
|
|
def test_dtype_mix(self):
|
|
c = np.array([False, True, False, False, False, False, True, False,
|
|
False, False, True, False])
|
|
a = np.uint32(1)
|
|
b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.],
|
|
dtype=np.float64)
|
|
r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.],
|
|
dtype=np.float64)
|
|
assert_equal(np.where(c, a, b), r)
|
|
|
|
a = a.astype(np.float32)
|
|
b = b.astype(np.int64)
|
|
assert_equal(np.where(c, a, b), r)
|
|
|
|
# non bool mask
|
|
c = c.astype(int)
|
|
c[c != 0] = 34242324
|
|
assert_equal(np.where(c, a, b), r)
|
|
# invert
|
|
tmpmask = c != 0
|
|
c[c == 0] = 41247212
|
|
c[tmpmask] = 0
|
|
assert_equal(np.where(c, b, a), r)
|
|
|
|
def test_foreign(self):
|
|
c = np.array([False, True, False, False, False, False, True, False,
|
|
False, False, True, False])
|
|
r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.],
|
|
dtype=np.float64)
|
|
a = np.ones(1, dtype='>i4')
|
|
b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.],
|
|
dtype=np.float64)
|
|
assert_equal(np.where(c, a, b), r)
|
|
|
|
b = b.astype('>f8')
|
|
assert_equal(np.where(c, a, b), r)
|
|
|
|
a = a.astype('<i4')
|
|
assert_equal(np.where(c, a, b), r)
|
|
|
|
c = c.astype('>i4')
|
|
assert_equal(np.where(c, a, b), r)
|
|
|
|
def test_error(self):
|
|
c = [True, True]
|
|
a = np.ones((4, 5))
|
|
b = np.ones((5, 5))
|
|
assert_raises(ValueError, np.where, c, a, a)
|
|
assert_raises(ValueError, np.where, c[0], a, b)
|
|
|
|
def test_string(self):
|
|
# gh-4778 check strings are properly filled with nulls
|
|
a = np.array("abc")
|
|
b = np.array("x" * 753)
|
|
assert_equal(np.where(True, a, b), "abc")
|
|
assert_equal(np.where(False, b, a), "abc")
|
|
|
|
# check native datatype sized strings
|
|
a = np.array("abcd")
|
|
b = np.array("x" * 8)
|
|
assert_equal(np.where(True, a, b), "abcd")
|
|
assert_equal(np.where(False, b, a), "abcd")
|
|
|
|
def test_empty_result(self):
|
|
# pass empty where result through an assignment which reads the data of
|
|
# empty arrays, error detectable with valgrind, see gh-8922
|
|
x = np.zeros((1, 1))
|
|
ibad = np.vstack(np.where(x == 99.))
|
|
assert_array_equal(ibad,
|
|
np.atleast_2d(np.array([[],[]], dtype=np.intp)))
|
|
|
|
def test_largedim(self):
|
|
# invalid read regression gh-9304
|
|
shape = [10, 2, 3, 4, 5, 6]
|
|
np.random.seed(2)
|
|
array = np.random.rand(*shape)
|
|
|
|
for i in range(10):
|
|
benchmark = array.nonzero()
|
|
result = array.nonzero()
|
|
assert_array_equal(benchmark, result)
|
|
|
|
|
|
if not IS_PYPY:
|
|
# sys.getsizeof() is not valid on PyPy
|
|
class TestSizeOf:
|
|
|
|
def test_empty_array(self):
|
|
x = np.array([])
|
|
assert_(sys.getsizeof(x) > 0)
|
|
|
|
def check_array(self, dtype):
|
|
elem_size = dtype(0).itemsize
|
|
|
|
for length in [10, 50, 100, 500]:
|
|
x = np.arange(length, dtype=dtype)
|
|
assert_(sys.getsizeof(x) > length * elem_size)
|
|
|
|
def test_array_int32(self):
|
|
self.check_array(np.int32)
|
|
|
|
def test_array_int64(self):
|
|
self.check_array(np.int64)
|
|
|
|
def test_array_float32(self):
|
|
self.check_array(np.float32)
|
|
|
|
def test_array_float64(self):
|
|
self.check_array(np.float64)
|
|
|
|
def test_view(self):
|
|
d = np.ones(100)
|
|
assert_(sys.getsizeof(d[...]) < sys.getsizeof(d))
|
|
|
|
def test_reshape(self):
|
|
d = np.ones(100)
|
|
assert_(sys.getsizeof(d) < sys.getsizeof(d.reshape(100, 1, 1).copy()))
|
|
|
|
@_no_tracing
|
|
def test_resize(self):
|
|
d = np.ones(100)
|
|
old = sys.getsizeof(d)
|
|
d.resize(50)
|
|
assert_(old > sys.getsizeof(d))
|
|
d.resize(150)
|
|
assert_(old < sys.getsizeof(d))
|
|
|
|
def test_error(self):
|
|
d = np.ones(100)
|
|
assert_raises(TypeError, d.__sizeof__, "a")
|
|
|
|
|
|
class TestHashing:
|
|
|
|
def test_arrays_not_hashable(self):
|
|
x = np.ones(3)
|
|
assert_raises(TypeError, hash, x)
|
|
|
|
def test_collections_hashable(self):
|
|
x = np.array([])
|
|
assert_(not isinstance(x, collections.abc.Hashable))
|
|
|
|
|
|
class TestArrayPriority:
|
|
# This will go away when __array_priority__ is settled, meanwhile
|
|
# it serves to check unintended changes.
|
|
op = operator
|
|
binary_ops = [
|
|
op.pow, op.add, op.sub, op.mul, op.floordiv, op.truediv, op.mod,
|
|
op.and_, op.or_, op.xor, op.lshift, op.rshift, op.mod, op.gt,
|
|
op.ge, op.lt, op.le, op.ne, op.eq
|
|
]
|
|
|
|
class Foo(np.ndarray):
|
|
__array_priority__ = 100.
|
|
|
|
def __new__(cls, *args, **kwargs):
|
|
return np.array(*args, **kwargs).view(cls)
|
|
|
|
class Bar(np.ndarray):
|
|
__array_priority__ = 101.
|
|
|
|
def __new__(cls, *args, **kwargs):
|
|
return np.array(*args, **kwargs).view(cls)
|
|
|
|
class Other:
|
|
__array_priority__ = 1000.
|
|
|
|
def _all(self, other):
|
|
return self.__class__()
|
|
|
|
__add__ = __radd__ = _all
|
|
__sub__ = __rsub__ = _all
|
|
__mul__ = __rmul__ = _all
|
|
__pow__ = __rpow__ = _all
|
|
__div__ = __rdiv__ = _all
|
|
__mod__ = __rmod__ = _all
|
|
__truediv__ = __rtruediv__ = _all
|
|
__floordiv__ = __rfloordiv__ = _all
|
|
__and__ = __rand__ = _all
|
|
__xor__ = __rxor__ = _all
|
|
__or__ = __ror__ = _all
|
|
__lshift__ = __rlshift__ = _all
|
|
__rshift__ = __rrshift__ = _all
|
|
__eq__ = _all
|
|
__ne__ = _all
|
|
__gt__ = _all
|
|
__ge__ = _all
|
|
__lt__ = _all
|
|
__le__ = _all
|
|
|
|
def test_ndarray_subclass(self):
|
|
a = np.array([1, 2])
|
|
b = self.Bar([1, 2])
|
|
for f in self.binary_ops:
|
|
msg = repr(f)
|
|
assert_(isinstance(f(a, b), self.Bar), msg)
|
|
assert_(isinstance(f(b, a), self.Bar), msg)
|
|
|
|
def test_ndarray_other(self):
|
|
a = np.array([1, 2])
|
|
b = self.Other()
|
|
for f in self.binary_ops:
|
|
msg = repr(f)
|
|
assert_(isinstance(f(a, b), self.Other), msg)
|
|
assert_(isinstance(f(b, a), self.Other), msg)
|
|
|
|
def test_subclass_subclass(self):
|
|
a = self.Foo([1, 2])
|
|
b = self.Bar([1, 2])
|
|
for f in self.binary_ops:
|
|
msg = repr(f)
|
|
assert_(isinstance(f(a, b), self.Bar), msg)
|
|
assert_(isinstance(f(b, a), self.Bar), msg)
|
|
|
|
def test_subclass_other(self):
|
|
a = self.Foo([1, 2])
|
|
b = self.Other()
|
|
for f in self.binary_ops:
|
|
msg = repr(f)
|
|
assert_(isinstance(f(a, b), self.Other), msg)
|
|
assert_(isinstance(f(b, a), self.Other), msg)
|
|
|
|
|
|
class TestBytestringArrayNonzero:
|
|
|
|
def test_empty_bstring_array_is_falsey(self):
|
|
assert_(not np.array([''], dtype=str))
|
|
|
|
def test_whitespace_bstring_array_is_falsey(self):
|
|
a = np.array(['spam'], dtype=str)
|
|
a[0] = ' \0\0'
|
|
assert_(not a)
|
|
|
|
def test_all_null_bstring_array_is_falsey(self):
|
|
a = np.array(['spam'], dtype=str)
|
|
a[0] = '\0\0\0\0'
|
|
assert_(not a)
|
|
|
|
def test_null_inside_bstring_array_is_truthy(self):
|
|
a = np.array(['spam'], dtype=str)
|
|
a[0] = ' \0 \0'
|
|
assert_(a)
|
|
|
|
|
|
class TestUnicodeEncoding:
|
|
"""
|
|
Tests for encoding related bugs, such as UCS2 vs UCS4, round-tripping
|
|
issues, etc
|
|
"""
|
|
def test_round_trip(self):
|
|
""" Tests that GETITEM, SETITEM, and PyArray_Scalar roundtrip """
|
|
# gh-15363
|
|
arr = np.zeros(shape=(), dtype="U1")
|
|
for i in range(1, sys.maxunicode + 1):
|
|
expected = chr(i)
|
|
arr[()] = expected
|
|
assert arr[()] == expected
|
|
assert arr.item() == expected
|
|
|
|
def test_assign_scalar(self):
|
|
# gh-3258
|
|
l = np.array(['aa', 'bb'])
|
|
l[:] = np.unicode_('cc')
|
|
assert_equal(l, ['cc', 'cc'])
|
|
|
|
def test_fill_scalar(self):
|
|
# gh-7227
|
|
l = np.array(['aa', 'bb'])
|
|
l.fill(np.unicode_('cc'))
|
|
assert_equal(l, ['cc', 'cc'])
|
|
|
|
|
|
class TestUnicodeArrayNonzero:
|
|
|
|
def test_empty_ustring_array_is_falsey(self):
|
|
assert_(not np.array([''], dtype=np.unicode_))
|
|
|
|
def test_whitespace_ustring_array_is_falsey(self):
|
|
a = np.array(['eggs'], dtype=np.unicode_)
|
|
a[0] = ' \0\0'
|
|
assert_(not a)
|
|
|
|
def test_all_null_ustring_array_is_falsey(self):
|
|
a = np.array(['eggs'], dtype=np.unicode_)
|
|
a[0] = '\0\0\0\0'
|
|
assert_(not a)
|
|
|
|
def test_null_inside_ustring_array_is_truthy(self):
|
|
a = np.array(['eggs'], dtype=np.unicode_)
|
|
a[0] = ' \0 \0'
|
|
assert_(a)
|
|
|
|
|
|
class TestFormat:
|
|
|
|
def test_0d(self):
|
|
a = np.array(np.pi)
|
|
assert_equal('{:0.3g}'.format(a), '3.14')
|
|
assert_equal('{:0.3g}'.format(a[()]), '3.14')
|
|
|
|
def test_1d_no_format(self):
|
|
a = np.array([np.pi])
|
|
assert_equal('{}'.format(a), str(a))
|
|
|
|
def test_1d_format(self):
|
|
# until gh-5543, ensure that the behaviour matches what it used to be
|
|
a = np.array([np.pi])
|
|
assert_raises(TypeError, '{:30}'.format, a)
|
|
|
|
from numpy.testing import IS_PYPY
|
|
|
|
class TestCTypes:
|
|
|
|
def test_ctypes_is_available(self):
|
|
test_arr = np.array([[1, 2, 3], [4, 5, 6]])
|
|
|
|
assert_equal(ctypes, test_arr.ctypes._ctypes)
|
|
assert_equal(tuple(test_arr.ctypes.shape), (2, 3))
|
|
|
|
def test_ctypes_is_not_available(self):
|
|
from numpy.core import _internal
|
|
_internal.ctypes = None
|
|
try:
|
|
test_arr = np.array([[1, 2, 3], [4, 5, 6]])
|
|
|
|
assert_(isinstance(test_arr.ctypes._ctypes,
|
|
_internal._missing_ctypes))
|
|
assert_equal(tuple(test_arr.ctypes.shape), (2, 3))
|
|
finally:
|
|
_internal.ctypes = ctypes
|
|
|
|
def _make_readonly(x):
|
|
x.flags.writeable = False
|
|
return x
|
|
|
|
@pytest.mark.parametrize('arr', [
|
|
np.array([1, 2, 3]),
|
|
np.array([['one', 'two'], ['three', 'four']]),
|
|
np.array((1, 2), dtype='i4,i4'),
|
|
np.zeros((2,), dtype=
|
|
np.dtype(dict(
|
|
formats=['<i4', '<i4'],
|
|
names=['a', 'b'],
|
|
offsets=[0, 2],
|
|
itemsize=6
|
|
))
|
|
),
|
|
np.array([None], dtype=object),
|
|
np.array([]),
|
|
np.empty((0, 0)),
|
|
_make_readonly(np.array([1, 2, 3])),
|
|
], ids=[
|
|
'1d',
|
|
'2d',
|
|
'structured',
|
|
'overlapping',
|
|
'object',
|
|
'empty',
|
|
'empty-2d',
|
|
'readonly'
|
|
])
|
|
def test_ctypes_data_as_holds_reference(self, arr):
|
|
# gh-9647
|
|
# create a copy to ensure that pytest does not mess with the refcounts
|
|
arr = arr.copy()
|
|
|
|
arr_ref = weakref.ref(arr)
|
|
|
|
ctypes_ptr = arr.ctypes.data_as(ctypes.c_void_p)
|
|
|
|
# `ctypes_ptr` should hold onto `arr`
|
|
del arr
|
|
break_cycles()
|
|
assert_(arr_ref() is not None, "ctypes pointer did not hold onto a reference")
|
|
|
|
# but when the `ctypes_ptr` object dies, so should `arr`
|
|
del ctypes_ptr
|
|
if IS_PYPY:
|
|
# Pypy does not recycle arr objects immediately. Trigger gc to
|
|
# release arr. Cpython uses refcounts. An explicit call to gc
|
|
# should not be needed here.
|
|
break_cycles()
|
|
assert_(arr_ref() is None, "unknowable whether ctypes pointer holds a reference")
|
|
|
|
def test_ctypes_as_parameter_holds_reference(self):
|
|
arr = np.array([None]).copy()
|
|
|
|
arr_ref = weakref.ref(arr)
|
|
|
|
ctypes_ptr = arr.ctypes._as_parameter_
|
|
|
|
# `ctypes_ptr` should hold onto `arr`
|
|
del arr
|
|
break_cycles()
|
|
assert_(arr_ref() is not None, "ctypes pointer did not hold onto a reference")
|
|
|
|
# but when the `ctypes_ptr` object dies, so should `arr`
|
|
del ctypes_ptr
|
|
if IS_PYPY:
|
|
break_cycles()
|
|
assert_(arr_ref() is None, "unknowable whether ctypes pointer holds a reference")
|
|
|
|
|
|
class TestWritebackIfCopy:
|
|
# all these tests use the WRITEBACKIFCOPY mechanism
|
|
def test_argmax_with_out(self):
|
|
mat = np.eye(5)
|
|
out = np.empty(5, dtype='i2')
|
|
res = np.argmax(mat, 0, out=out)
|
|
assert_equal(res, range(5))
|
|
|
|
def test_argmin_with_out(self):
|
|
mat = -np.eye(5)
|
|
out = np.empty(5, dtype='i2')
|
|
res = np.argmin(mat, 0, out=out)
|
|
assert_equal(res, range(5))
|
|
|
|
def test_insert_noncontiguous(self):
|
|
a = np.arange(6).reshape(2,3).T # force non-c-contiguous
|
|
# uses arr_insert
|
|
np.place(a, a>2, [44, 55])
|
|
assert_equal(a, np.array([[0, 44], [1, 55], [2, 44]]))
|
|
# hit one of the failing paths
|
|
assert_raises(ValueError, np.place, a, a>20, [])
|
|
|
|
def test_put_noncontiguous(self):
|
|
a = np.arange(6).reshape(2,3).T # force non-c-contiguous
|
|
np.put(a, [0, 2], [44, 55])
|
|
assert_equal(a, np.array([[44, 3], [55, 4], [2, 5]]))
|
|
|
|
def test_putmask_noncontiguous(self):
|
|
a = np.arange(6).reshape(2,3).T # force non-c-contiguous
|
|
# uses arr_putmask
|
|
np.putmask(a, a>2, a**2)
|
|
assert_equal(a, np.array([[0, 9], [1, 16], [2, 25]]))
|
|
|
|
def test_take_mode_raise(self):
|
|
a = np.arange(6, dtype='int')
|
|
out = np.empty(2, dtype='int')
|
|
np.take(a, [0, 2], out=out, mode='raise')
|
|
assert_equal(out, np.array([0, 2]))
|
|
|
|
def test_choose_mod_raise(self):
|
|
a = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]])
|
|
out = np.empty((3,3), dtype='int')
|
|
choices = [-10, 10]
|
|
np.choose(a, choices, out=out, mode='raise')
|
|
assert_equal(out, np.array([[ 10, -10, 10],
|
|
[-10, 10, -10],
|
|
[ 10, -10, 10]]))
|
|
|
|
def test_flatiter__array__(self):
|
|
a = np.arange(9).reshape(3,3)
|
|
b = a.T.flat
|
|
c = b.__array__()
|
|
# triggers the WRITEBACKIFCOPY resolution, assuming refcount semantics
|
|
del c
|
|
|
|
def test_dot_out(self):
|
|
# if HAVE_CBLAS, will use WRITEBACKIFCOPY
|
|
a = np.arange(9, dtype=float).reshape(3,3)
|
|
b = np.dot(a, a, out=a)
|
|
assert_equal(b, np.array([[15, 18, 21], [42, 54, 66], [69, 90, 111]]))
|
|
|
|
def test_view_assign(self):
|
|
from numpy.core._multiarray_tests import npy_create_writebackifcopy, npy_resolve
|
|
|
|
arr = np.arange(9).reshape(3, 3).T
|
|
arr_wb = npy_create_writebackifcopy(arr)
|
|
assert_(arr_wb.flags.writebackifcopy)
|
|
assert_(arr_wb.base is arr)
|
|
arr_wb[...] = -100
|
|
npy_resolve(arr_wb)
|
|
# arr changes after resolve, even though we assigned to arr_wb
|
|
assert_equal(arr, -100)
|
|
# after resolve, the two arrays no longer reference each other
|
|
assert_(arr_wb.ctypes.data != 0)
|
|
assert_equal(arr_wb.base, None)
|
|
# assigning to arr_wb does not get transferred to arr
|
|
arr_wb[...] = 100
|
|
assert_equal(arr, -100)
|
|
|
|
@pytest.mark.leaks_references(
|
|
reason="increments self in dealloc; ignore since deprecated path.")
|
|
def test_dealloc_warning(self):
|
|
with suppress_warnings() as sup:
|
|
sup.record(RuntimeWarning)
|
|
arr = np.arange(9).reshape(3, 3)
|
|
v = arr.T
|
|
_multiarray_tests.npy_abuse_writebackifcopy(v)
|
|
assert len(sup.log) == 1
|
|
|
|
def test_view_discard_refcount(self):
|
|
from numpy.core._multiarray_tests import npy_create_writebackifcopy, npy_discard
|
|
|
|
arr = np.arange(9).reshape(3, 3).T
|
|
orig = arr.copy()
|
|
if HAS_REFCOUNT:
|
|
arr_cnt = sys.getrefcount(arr)
|
|
arr_wb = npy_create_writebackifcopy(arr)
|
|
assert_(arr_wb.flags.writebackifcopy)
|
|
assert_(arr_wb.base is arr)
|
|
arr_wb[...] = -100
|
|
npy_discard(arr_wb)
|
|
# arr remains unchanged after discard
|
|
assert_equal(arr, orig)
|
|
# after discard, the two arrays no longer reference each other
|
|
assert_(arr_wb.ctypes.data != 0)
|
|
assert_equal(arr_wb.base, None)
|
|
if HAS_REFCOUNT:
|
|
assert_equal(arr_cnt, sys.getrefcount(arr))
|
|
# assigning to arr_wb does not get transferred to arr
|
|
arr_wb[...] = 100
|
|
assert_equal(arr, orig)
|
|
|
|
|
|
class TestArange:
|
|
def test_infinite(self):
|
|
assert_raises_regex(
|
|
ValueError, "size exceeded",
|
|
np.arange, 0, np.inf
|
|
)
|
|
|
|
def test_nan_step(self):
|
|
assert_raises_regex(
|
|
ValueError, "cannot compute length",
|
|
np.arange, 0, 1, np.nan
|
|
)
|
|
|
|
def test_zero_step(self):
|
|
assert_raises(ZeroDivisionError, np.arange, 0, 10, 0)
|
|
assert_raises(ZeroDivisionError, np.arange, 0.0, 10.0, 0.0)
|
|
|
|
# empty range
|
|
assert_raises(ZeroDivisionError, np.arange, 0, 0, 0)
|
|
assert_raises(ZeroDivisionError, np.arange, 0.0, 0.0, 0.0)
|
|
|
|
|
|
class TestArrayFinalize:
|
|
""" Tests __array_finalize__ """
|
|
|
|
def test_receives_base(self):
|
|
# gh-11237
|
|
class SavesBase(np.ndarray):
|
|
def __array_finalize__(self, obj):
|
|
self.saved_base = self.base
|
|
|
|
a = np.array(1).view(SavesBase)
|
|
assert_(a.saved_base is a.base)
|
|
|
|
def test_lifetime_on_error(self):
|
|
# gh-11237
|
|
class RaisesInFinalize(np.ndarray):
|
|
def __array_finalize__(self, obj):
|
|
# crash, but keep this object alive
|
|
raise Exception(self)
|
|
|
|
# a plain object can't be weakref'd
|
|
class Dummy: pass
|
|
|
|
# get a weak reference to an object within an array
|
|
obj_arr = np.array(Dummy())
|
|
obj_ref = weakref.ref(obj_arr[()])
|
|
|
|
# get an array that crashed in __array_finalize__
|
|
with assert_raises(Exception) as e:
|
|
obj_arr.view(RaisesInFinalize)
|
|
|
|
obj_subarray = e.exception.args[0]
|
|
del e
|
|
assert_(isinstance(obj_subarray, RaisesInFinalize))
|
|
|
|
# reference should still be held by obj_arr
|
|
break_cycles()
|
|
assert_(obj_ref() is not None, "object should not already be dead")
|
|
|
|
del obj_arr
|
|
break_cycles()
|
|
assert_(obj_ref() is not None, "obj_arr should not hold the last reference")
|
|
|
|
del obj_subarray
|
|
break_cycles()
|
|
assert_(obj_ref() is None, "no references should remain")
|
|
|
|
|
|
def test_orderconverter_with_nonASCII_unicode_ordering():
|
|
# gh-7475
|
|
a = np.arange(5)
|
|
assert_raises(ValueError, a.flatten, order=u'\xe2')
|
|
|
|
|
|
def test_equal_override():
|
|
# gh-9153: ndarray.__eq__ uses special logic for structured arrays, which
|
|
# did not respect overrides with __array_priority__ or __array_ufunc__.
|
|
# The PR fixed this for __array_priority__ and __array_ufunc__ = None.
|
|
class MyAlwaysEqual:
|
|
def __eq__(self, other):
|
|
return "eq"
|
|
|
|
def __ne__(self, other):
|
|
return "ne"
|
|
|
|
class MyAlwaysEqualOld(MyAlwaysEqual):
|
|
__array_priority__ = 10000
|
|
|
|
class MyAlwaysEqualNew(MyAlwaysEqual):
|
|
__array_ufunc__ = None
|
|
|
|
array = np.array([(0, 1), (2, 3)], dtype='i4,i4')
|
|
for my_always_equal_cls in MyAlwaysEqualOld, MyAlwaysEqualNew:
|
|
my_always_equal = my_always_equal_cls()
|
|
assert_equal(my_always_equal == array, 'eq')
|
|
assert_equal(array == my_always_equal, 'eq')
|
|
assert_equal(my_always_equal != array, 'ne')
|
|
assert_equal(array != my_always_equal, 'ne')
|
|
|
|
|
|
def test_npymath_complex():
|
|
# Smoketest npymath functions
|
|
from numpy.core._multiarray_tests import (
|
|
npy_cabs, npy_carg)
|
|
|
|
funcs = {npy_cabs: np.absolute,
|
|
npy_carg: np.angle}
|
|
vals = (1, np.inf, -np.inf, np.nan)
|
|
types = (np.complex64, np.complex128, np.clongdouble)
|
|
|
|
for fun, npfun in funcs.items():
|
|
for x, y in itertools.product(vals, vals):
|
|
for t in types:
|
|
z = t(complex(x, y))
|
|
got = fun(z)
|
|
expected = npfun(z)
|
|
assert_allclose(got, expected)
|
|
|
|
|
|
def test_npymath_real():
|
|
# Smoketest npymath functions
|
|
from numpy.core._multiarray_tests import (
|
|
npy_log10, npy_cosh, npy_sinh, npy_tan, npy_tanh)
|
|
|
|
funcs = {npy_log10: np.log10,
|
|
npy_cosh: np.cosh,
|
|
npy_sinh: np.sinh,
|
|
npy_tan: np.tan,
|
|
npy_tanh: np.tanh}
|
|
vals = (1, np.inf, -np.inf, np.nan)
|
|
types = (np.float32, np.float64, np.longdouble)
|
|
|
|
with np.errstate(all='ignore'):
|
|
for fun, npfun in funcs.items():
|
|
for x, t in itertools.product(vals, types):
|
|
z = t(x)
|
|
got = fun(z)
|
|
expected = npfun(z)
|
|
assert_allclose(got, expected)
|
|
|
|
def test_uintalignment_and_alignment():
|
|
# alignment code needs to satisfy these requirements:
|
|
# 1. numpy structs match C struct layout
|
|
# 2. ufuncs/casting is safe wrt to aligned access
|
|
# 3. copy code is safe wrt to "uint alidned" access
|
|
#
|
|
# Complex types are the main problem, whose alignment may not be the same
|
|
# as their "uint alignment".
|
|
#
|
|
# This test might only fail on certain platforms, where uint64 alignment is
|
|
# not equal to complex64 alignment. The second 2 tests will only fail
|
|
# for DEBUG=1.
|
|
|
|
d1 = np.dtype('u1,c8', align=True)
|
|
d2 = np.dtype('u4,c8', align=True)
|
|
d3 = np.dtype({'names': ['a', 'b'], 'formats': ['u1', d1]}, align=True)
|
|
|
|
assert_equal(np.zeros(1, dtype=d1)['f1'].flags['ALIGNED'], True)
|
|
assert_equal(np.zeros(1, dtype=d2)['f1'].flags['ALIGNED'], True)
|
|
assert_equal(np.zeros(1, dtype='u1,c8')['f1'].flags['ALIGNED'], False)
|
|
|
|
# check that C struct matches numpy struct size
|
|
s = _multiarray_tests.get_struct_alignments()
|
|
for d, (alignment, size) in zip([d1,d2,d3], s):
|
|
assert_equal(d.alignment, alignment)
|
|
assert_equal(d.itemsize, size)
|
|
|
|
# check that ufuncs don't complain in debug mode
|
|
# (this is probably OK if the aligned flag is true above)
|
|
src = np.zeros((2,2), dtype=d1)['f1'] # 4-byte aligned, often
|
|
np.exp(src) # assert fails?
|
|
|
|
# check that copy code doesn't complain in debug mode
|
|
dst = np.zeros((2,2), dtype='c8')
|
|
dst[:,1] = src[:,1] # assert in lowlevel_strided_loops fails?
|
|
|
|
class TestAlignment:
|
|
# adapted from scipy._lib.tests.test__util.test__aligned_zeros
|
|
# Checks that unusual memory alignments don't trip up numpy.
|
|
# In particular, check RELAXED_STRIDES don't trip alignment assertions in
|
|
# NDEBUG mode for size-0 arrays (gh-12503)
|
|
|
|
def check(self, shape, dtype, order, align):
|
|
err_msg = repr((shape, dtype, order, align))
|
|
x = _aligned_zeros(shape, dtype, order, align=align)
|
|
if align is None:
|
|
align = np.dtype(dtype).alignment
|
|
assert_equal(x.__array_interface__['data'][0] % align, 0)
|
|
if hasattr(shape, '__len__'):
|
|
assert_equal(x.shape, shape, err_msg)
|
|
else:
|
|
assert_equal(x.shape, (shape,), err_msg)
|
|
assert_equal(x.dtype, dtype)
|
|
if order == "C":
|
|
assert_(x.flags.c_contiguous, err_msg)
|
|
elif order == "F":
|
|
if x.size > 0:
|
|
assert_(x.flags.f_contiguous, err_msg)
|
|
elif order is None:
|
|
assert_(x.flags.c_contiguous, err_msg)
|
|
else:
|
|
raise ValueError()
|
|
|
|
def test_various_alignments(self):
|
|
for align in [1, 2, 3, 4, 8, 12, 16, 32, 64, None]:
|
|
for n in [0, 1, 3, 11]:
|
|
for order in ["C", "F", None]:
|
|
for dtype in list(np.typecodes["All"]) + ['i4,i4,i4']:
|
|
if dtype == 'O':
|
|
# object dtype can't be misaligned
|
|
continue
|
|
for shape in [n, (1, 2, 3, n)]:
|
|
self.check(shape, np.dtype(dtype), order, align)
|
|
|
|
def test_strided_loop_alignments(self):
|
|
# particularly test that complex64 and float128 use right alignment
|
|
# code-paths, since these are particularly problematic. It is useful to
|
|
# turn on USE_DEBUG for this test, so lowlevel-loop asserts are run.
|
|
for align in [1, 2, 4, 8, 12, 16, None]:
|
|
xf64 = _aligned_zeros(3, np.float64)
|
|
|
|
xc64 = _aligned_zeros(3, np.complex64, align=align)
|
|
xf128 = _aligned_zeros(3, np.longdouble, align=align)
|
|
|
|
# test casting, both to and from misaligned
|
|
with suppress_warnings() as sup:
|
|
sup.filter(np.ComplexWarning, "Casting complex values")
|
|
xc64.astype('f8')
|
|
xf64.astype(np.complex64)
|
|
test = xc64 + xf64
|
|
|
|
xf128.astype('f8')
|
|
xf64.astype(np.longdouble)
|
|
test = xf128 + xf64
|
|
|
|
test = xf128 + xc64
|
|
|
|
# test copy, both to and from misaligned
|
|
# contig copy
|
|
xf64[:] = xf64.copy()
|
|
xc64[:] = xc64.copy()
|
|
xf128[:] = xf128.copy()
|
|
# strided copy
|
|
xf64[::2] = xf64[::2].copy()
|
|
xc64[::2] = xc64[::2].copy()
|
|
xf128[::2] = xf128[::2].copy()
|
|
|
|
def test_getfield():
|
|
a = np.arange(32, dtype='uint16')
|
|
if sys.byteorder == 'little':
|
|
i = 0
|
|
j = 1
|
|
else:
|
|
i = 1
|
|
j = 0
|
|
b = a.getfield('int8', i)
|
|
assert_equal(b, a)
|
|
b = a.getfield('int8', j)
|
|
assert_equal(b, 0)
|
|
pytest.raises(ValueError, a.getfield, 'uint8', -1)
|
|
pytest.raises(ValueError, a.getfield, 'uint8', 16)
|
|
pytest.raises(ValueError, a.getfield, 'uint64', 0)
|